Patent Mining on the Use of Antioxidant Phytochemicals in the Technological Development for the Prevention and Treatment of Periodontitis
Abstract
:1. Introduction
1.1. Pathophysiology of Periodontal Disease
1.2. The Role of Oxidative Stress in Periodontal Disease
1.3. Clinical Evidence for Using Antioxidants in the Treatment of Periodontal Disease
2. Materials and Methods
3. Results and Discussion
3.1. Overview of Antioxidant-Related Patents in Periodontal Diseases
3.2. Vitamin C-Related Patents in Periodontal Diseases
3.3. Green Tea-Related Patents in Periodontal Diseases
3.4. Quercetin-Related Patents in Periodontal Diseases
3.5. Melatonin-Related Patents in Periodontal Diseases
3.6. Other Compound-Related Patents in Periodontal Diseases
3.7. Targets of Antioxidant Phytochemicals in Periodontal Disease
3.8. Antioxidant Market: Innovative Solutions in Oral Health
3.9. Challenges and Limitations of Using Antioxidants to Treat and Prevent Periodontal Disease
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abdulkareem, A.A.; Firas, B.A.; Ali, J.B.; Al-Sharqia, S.S.; Gulb, A.S.; Iain, L.C.C. Current concepts in the pathogenesis of periodontitis: From symbiosis to dysbiosis. J. Oral. Microbiol. 2023, 15, 2197779. [Google Scholar] [CrossRef] [PubMed]
- Sedghi, L.M.; Bacino, M.; Kapila, Y.L. Periodontal Disease: The Good, The Bad, and The Unknown. Frontiers in Cellular and Infection Microbiology. Front. Cell. Infect. Microbiol. 2021, 11, 766944. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zheng, Y.; Bian, X.; Wang, M.; Chou, J.; Liu, H.; Wang, Z. Identification of Key Genes and Pathways Associated with Oxidative Stress in Periodontitis. Oxid. Med. Cell. Longev. 2022, 2022, 9728172. [Google Scholar] [CrossRef] [PubMed]
- Salvi, G.E.; Roccuzzo, A.; Imber, J.C.; Stähli, A.; Klinge, B.; Lang, N.P. Clinical periodontal diagnosis. Periodontol. 2000 2023. online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.X.; Zhong, Y.J.; Dong, Q.Q.; Wong, H.M.; Wen, Y.F. Global, regional, and national burden of severe periodontitis, 1990–2019: An analysis of the global burden of disease study 2019. J. Clin. Periodontol. 2021, 48, 1165–1188. [Google Scholar] [CrossRef] [PubMed]
- Gasner, N.S.; Schure, R.S. Periodontal Disease; StatPearls Publishing: Treasure Island, FL, USA, 2020. Available online: https://www.ncbi.nlm.nih.gov/books/NBK554590/ (accessed on 27 January 2024).
- Kalhan, A.C.; Wong, M.L.; Allen, F.; Gao, X. Periodontal disease and systemic health: An update for medical practitioners. Ann. Acad. Med. Singap. 2022, 51, 567–574. [Google Scholar] [CrossRef] [PubMed]
- Kwon, T.; Lamster, I.B.; Levin, L. Current Concepts in the Management of Periodontitis. Int. Dent. J. 2021, 71, 462–476. [Google Scholar] [CrossRef] [PubMed]
- Haas, A.N.; Furlaneto, F.; Gaio, E.J.; Gomes, S.C.; Palioto, D.B.; Castilho, R.M.; Sanz, M.; Messora, M.R. New tendencies in non-surgical periodontal therapy. Braz. Oral. Res. 2021, 35, e095. [Google Scholar] [CrossRef] [PubMed]
- Poppolo, D.F.; Ouanounou, A. Mouthwashes and their use in dentistry: A review. Oral Health 2021, 22–34. Available online: www.oralhealthgroup.com (accessed on 12 February 2024).
- Haydari, M.; Bardakci, A.G.; Koldsland, O.C.; Aass, A.M.; Sandvik, L.; Preus, H.R. Comparing the effect of 0.06%, 0.12% and 0.2% chlorhexidine on plaque, bleeding and side effects in an experimental gingivitis model: A parallel group, double masked randomized clinical trial. BMC Oral. Health 2017, 17, 118. [Google Scholar] [CrossRef]
- Brookes, Z.L.S.; Bescos, R.; Belfield, L.A.; Ali, K.; Roberts, A. Current uses of chlorhexidine for management of oral disease: A narrative review. J. Dent. 2020, 103, 103497. [Google Scholar] [CrossRef]
- James, P.; Worthington, H.V.; Parnell, C.; Harding, M.; Lamont, T.; Cheung, A.; Whelton, H.; Riley, P. Chlorhexidine mouthrinse as an adjunctive treatment for gingival health. Cochrane Database Syst. Rev. 2017, 3, CD008676. [Google Scholar] [PubMed]
- Olsvik, B.; Tenover, F.C. Tetracycline resistance in periodontal pathogens. Clin. Infect. Dis. 1993, 16, S310–S313. [Google Scholar] [CrossRef]
- Pajukanta, R. In vitro antimicrobial susceptibility of Porphyromonas gingivalis to azithromycin, a novel macrolide. Oral. Microbiol. Immunol. 1993, 8, 325–326. [Google Scholar] [CrossRef] [PubMed]
- Slots, J. Selection of antimicrobial agents in periodontal therapy. J. Periodontal. Res. 2002, 37, 389–398. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, G.G.; Locatelli, J.; Freitas, P.C.; Silva, G.L. Antibacterial activity of plant extracts and phytochemicals on antibiotic-resistant bacteria. Braz. J. Microbiol. 2000, 31, 247–256. [Google Scholar] [CrossRef]
- Reynolds, M.A.; Kao, R.T.; Camargo, P.M.; Caton, J.G.; Clem, D.S.; Fiorellini, J.P.; Geisinger, M.L.; Mills, M.P.; Nares, S.; Nevins, M.L. Periodontal regeneration—Intrabony defects: A consensus report from the AAP Regeneration Workshop. J. Periodontol. 2015, 86, S105–S107. [Google Scholar] [CrossRef]
- Carnevale, G.; Kaldahl, W.B. Osseous resective surgery. Periodontol. 2000 2000, 22, 59–87. [Google Scholar] [CrossRef] [PubMed]
- Clark, D.; Levin, L. Non-surgical management of tooth hypersensitivity. Int. Dent. J. 2016, 66, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Checchi, L.; Montevecchi, M.; Checchi, V.; Bonetti, G.A. A modified papilla preservation technique, 22 years later. Quintessence Int. 2009, 40, 303–311. [Google Scholar]
- Pandita, V.; Patthi, B.; Singla, A.; Singh, S.; Malhi, R.; Vashishtha, V. Dentistry meets nature-role of herbs in periodontal care: A systematic review. J. Indian. Assoc. Public Health Dent. 2014, 12, 148–156. [Google Scholar] [CrossRef]
- Kaur, A.; Kapoor, D.; Soni, N.; Gill, S. Phytodentistry—A boon. Arch. Dent. Med. Res. 2016, 2, 35–41. [Google Scholar]
- Anand, B. Herbal therapy in periodontics: A review. J. Res. Pharm. Sci. 2017, 3, 1–7. [Google Scholar]
- Khameneh, B.; Iranshahy, M.; Soheili, V.; Fazly Bazzaz, B.S. Review on plant antimicrobials: A mechanistic viewpoint. Antimicrob. Resist. Infect. Control 2019, 8, 118. [Google Scholar] [CrossRef]
- López-Valverde, N.; López-Valverde, A.; Montero, J.; Rodríguez, C.; Macedo de Sousa, B.; Aragoneses, J.M. Antioxidant, anti-inflammatory and antimicrobial activity of natural products in periodontal disease: A comprehensive review. Front. Bioeng. Biotechnol. 2023, 11, 1226907. [Google Scholar] [CrossRef] [PubMed]
- Vo, T.T.T.; Pei-Ming, C.; Vo, P.T.; Joyce, S.L.T.; I-Ta, L. The Promising Role of Antioxidant Phytochemicals in the Prevention and Treatment of Periodontal Disease via the Inhibition of Oxidative Stress Pathways: Updated Insights. Antioxidants 2020, 9, 1211. [Google Scholar] [CrossRef]
- Deo, P.N.; Deshmukh, R. Oral Microbiome: Unveiling the Fundamentals. J. Oral. Maxillofac. Pathol. 2019, 23, 122. [Google Scholar] [CrossRef]
- Kim, H.; Kim, S.; Jung, S. Instruction of Microbiome Taxonomic Profiling Based on 16S rRNA Sequencing. J. Microbiol. 2020, 58, 193–205. [Google Scholar] [CrossRef]
- Kolenbrander, P.E.; Andersen, R.N.; Moore, L.V. Intrageneric coaggregation among strains of human oral bacteria: Potential role in primary colonization of the tooth surface. Appl. Environ. Microbiol. 1990, 56, 3890–3894. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Li, M.; Gregory, R.L. Bacterial interactions in dental biofilm. Virulence 2011, 2, 435–444. [Google Scholar] [CrossRef]
- Jakubovics, N.S.; Goodman, S.D.; Mashburn-Warren, L.; Stafford, G.P.; Cieplik, F. The dental plaque biofilm matrix. Periodontol. 2000 2021, 86, 32–56. [Google Scholar] [CrossRef]
- Foster, J.S.; Kolenbrander, P.E. Development of a multispecies oral bacterial community in a saliva-conditioned flow cell. Appl. Environ. Microbiol. 2004, 70, 4340–4348. [Google Scholar] [CrossRef] [PubMed]
- Hajishengallis, G.; Chavakis, T.; Lambris, J.D. Current Understanding of Periodontal Disease Pathogenesis and Targets for Host-Modulation Therapy. Periodontol. 2000 2020, 84, 14–34. [Google Scholar] [CrossRef] [PubMed]
- Van Dyke, T.E.; Bartold, P.M.; Reynolds, E.C. The Nexus Between Periodontal Inflammation and Dysbiosis. Front. Immunol. 2020, 11, 530286. [Google Scholar] [CrossRef] [PubMed]
- Underhill, D.M.; Ozinsky, A. Toll-likereceptors:keymedi- ators of microbe detection. Curr. Opin. Immunol. 2002, 14, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Ebersole, J.L.; Dawson, D.R.; Morford, L.A.; Peyyala, R.; Miller, C.S.; Gonzaléz, O.A. Periodontal disease immunology: “double indemnity” in protecting the host. Periodontol. 2000 2013, 62, 163–202. [Google Scholar] [CrossRef] [PubMed]
- Kinney, J.S.; Morelli, T.; Oh, M.; Braun, T.M.; Ramseier, C.A.; Sugai, J.V.; Giannobile, W.V. Crevicular fluid biomark- ers and periodontal disease progression. J. Clin. Periodontol. 2014, 41, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Muniz, F.W.; Nogueira, S.B.; Mendes, F.L.; Rösing, C.K.; Moreira, M.M.S.M.; de Andrade, G.M.; de Sousa Carvalho, R. The impact of antioxidant agents complimentary to periodontal therapy on oxidative stress and periodontal outcomes: A systematic review. Arch. Oral. Biol. 2015, 60, 1203–1214. [Google Scholar] [CrossRef] [PubMed]
- Newman, M.G.; Takei, H.; Klokkevold, H.P.R.; Carranza, F.A. Carranza’s Clinical Periodontology, 11th ed.; Elsevier Saunders: St. Louis, MO, USA, 2012. [Google Scholar]
- Taubman, M.A.; Valverde, P.; Han, X.; Kawai, T. Immune response: The key to bone resorption in periodontal disease. J. Periodontol. 2005, 76, 2033–2041. [Google Scholar] [CrossRef]
- Ikeuchi, T.; Moutsopoulos, N.M. Osteoimmunology in periodontitis; a paradigm for Th17/IL-17 inflammatory bone loss. Bone 2022, 163, 116500. [Google Scholar] [CrossRef]
- Cekici, A.; Kantarci, A.; Hasturk, H.; Van Dyke, T.E. Inflammatory and immune pathways in the pathogenesis of periodontal disease. Periodontol. 2000 2014, 64, 57–80. [Google Scholar] [CrossRef]
- Chapple, I.L.; Brock, G.R.; Milward, M.R.; Ling, N.; Matthews, J.B. Compromised GCF total antioxidant capacity in periodontitis: Cause or effect? J. Clin. Periodontol. 2007, 34, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.T.; Ngo, L.Q.; Promsudthi, A.; Surarit, R. Salivary oxidative stress biomarkers in chronic periodontitis and acute coronary syndrome. Clin. Oral. Investig. 2017, 21, 2345–2353. [Google Scholar] [CrossRef] [PubMed]
- Chu, X.; Sun, Z.; Baek, D.S.; Li, W.; Mellors, J.W.; Shapiro, S.D.; Dimitrov, D.S. Human antibody domains and fragments targeting neutrophil elastase as candidate therapeutics for cancer and inflammation-related diseases. Int. J. Mol. Sci. 2021, 22, 11136. [Google Scholar] [CrossRef] [PubMed]
- Nussbaum, G.; Shapira, L. How has neutrophil research improved our understanding of periodontal pathogenesis? J. Clin. Periodontol. 2011, 38, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Qiu, X.; Yu, Y.; Liu, H.; Li, X.; Sun, W.; Wu, W.; Liu, C.; Miao, L. Remodeling the periodontitis microenvironment for osteogenesis by using a reactive oxygen species-cleavable nanoplatform. Acta Biomater. 2021, 135, 593–605. [Google Scholar] [CrossRef] [PubMed]
- Kelley, N.; Jeltema, D.; Duan, Y.; He, Y. The NLRP3 Inflammasome: An Overview of Mechanisms of Activation and Regulation. Int. J. Mol. Sci. 2019, 6, 3328. [Google Scholar] [CrossRef] [PubMed]
- Marchesan, J.T.; Girnary, M.S.; Moss, K.; Monaghan, E.T.; Egnatz, G.J.; Jiao, Y.; Zhang, S.; Beck, J.; Swanson, K.V. Role of inflammasomes in the pathogenesis of periodontal disease and therapeutics. Periodontol. 2000 2020, 82, 93–114. [Google Scholar] [CrossRef] [PubMed]
- Kanzaki, H.; Wada, S.; Narimiya, T.; Yamaguchi, Y.; Katsumata, Y.; Itohiya, K.; Fukaya, S.; Miyamoto, Y.; Nakamura, Y. Pathways that Regulate ROS Scavenging Enzymes, and Their Role in Defense Against Tissue Destruction in Periodontitis. Front. Physiol. 2017, 8, 351. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.Y.; Lee, S.Y.; Son, Y.O.; Shi, X.; Park, S.S.; Lee, J.C. Continuous presence of H2O2 induces mitochondrial-mediated, MAPK- and caspase-independent growth inhibition and cytotoxicity in human gingival fibroblasts. Toxicol. In Vitro 2012, 26, 561–570. [Google Scholar] [CrossRef]
- Xin, L.; Zhou, F.; Zhang, C.; Zhong, W.; Xu, S.; Jing, X.; Wang, D.; Wang, S.; Chen, T.; Song, J. Four-Octyl itaconate ameliorates periodontal destruction via Nrf2-dependent antioxidant system. Int. J. Oral. Sci. 2022, 14, 27. [Google Scholar] [CrossRef]
- Buettner, G.R. Superoxide dismutase in redox biology: The roles of superoxide and hydrogen peroxide. Anticancer Agents Med. Chem. 2011, 11, 341–346. [Google Scholar] [CrossRef] [PubMed]
- Handy, D.E.; Loscalzo, J. Redox Regulation of Mitochondrial Function. Antioxid. Redox Signal 2012, 16, 1323–1367. [Google Scholar] [CrossRef] [PubMed]
- Toczewska, J.; Tomasz Konopka, T. Activity of enzymatic antioxidants in periodontitis: A systematic overview of the literature. Dent. Med. Probl. 2019, 56, 419–426. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, S.; Xu, W.; Zhou, Y.; Luan, H.; Wang, D. Resveratrol decreases local inflammatory markers and systemic endotoxin in patients with aggressive periodontitis. Medicine 2022, 24, 25. [Google Scholar] [CrossRef]
- Jorgensen, M.G.; Slots, J. Responsible use of antimicrobials in periodontics. J. Calif. Dent. Assoc. 2000, 28, 185–193. [Google Scholar] [CrossRef]
- Taalab, M.R.; Mahmoud, S.A.; Moslemany, R.M.E.; Abdelaziz, D.M. Intrapocket application of tea tree oil gel in the treatment of stage 2 periodontitis. BMC Oral. Health 2021, 5, 239. [Google Scholar] [CrossRef]
- Elbehwashy, M.T.; Hosny, M.M.; Elfana, A.; Nawar, A.; Fawzy, E.S.K. Clinical and radiographic effects of ascorbic acid-augmented platelet-rich fibrin versus platelet-rich fibrin alone in intra-osseous defects of stage-III periodontitis patients: A randomized controlled clinical trial. Clin. Oral. Investig. 2021, 25, 6309–6319. [Google Scholar] [CrossRef]
- Socialstyrelsen. Nationella Riktlinjer för Vuxentandvård 2011-Stöd för Styrning Och Ledning; Socialstyrelsen: Västerås, Sweden, 2011; Available online: https://www.socialstyrelsen.se/en/clinical-practise-guidelines-and-regulations/regulations-and-guidelines/national-guidelines/ (accessed on 17 April 2024).
- Zeng, J.; Wang, Y.; Yuan, Q.; Luan, Q. The effect of (-)-epigallocatechin gallate as an adjunct to nonsurgical periodontal treatment: A randomized clinical trial. Trials 2022, 3, 368. [Google Scholar] [CrossRef]
- EPO-European Patent Office. Available online: www.epo.org (accessed on 9 March 2024).
- Doseděl, M.; Jirkovský, E.; Macáková, K.; Krčmová, L.K.; Javorská, L.; Pourová, J.; Mercolini, L.; Remião, F.; Nováková, L.; Mladěnka, P.; et al. Vitamin C-Sources, Physiological Role, Kinetics, Deficiency, Use, Toxicity, and Determination. Nutrients 2021, 13, 615. [Google Scholar] [CrossRef] [PubMed]
- Kishimoto, Y.; Saito, N.; Kurita, K.; Shimokado, K.; Maruyama, N.; Ishigami, A. Ascorbic acid enhances the expression of type 1 and type 4 collagen and SVCT2 in cultured human skin fibroblasts. Biochem. Biophys. Res. Commun. 2013, 430, 579–584. [Google Scholar] [CrossRef]
- Bechara, N.; Flood, V.M.; Gunton, J.E. A Systematic Review on the Role of Vitamin C in Tissue Healing. Antioxidants 2022, 19, 1605. [Google Scholar] [CrossRef] [PubMed]
- Aytekin, Z.; Arabaci, T.; Toraman, A.; Bayir, Y.; Albayrak, M.; Ustun, K. Immune modulatory and antioxidant effects of locally administrated vitamin C in experimental periodontitis in rats. Acta Odontol. Scand. 2020, 78, 425–432. [Google Scholar] [CrossRef]
- Oudemans-van Straaten, H.M.; Spoelstrade Man, A.M.; de Waard, M.C. Vitamin C revisited. Crit. Care 2014, 18, 460. [Google Scholar] [CrossRef] [PubMed]
- Marconi, G.D.; Fonticoli, L.; Guarnieri, S.; Cavalcanti, M.F.X.B.; Franchi, S.; Gatta, V.; Trubiani, O.; Pizzicannella, J.; Diomede, F. Ascorbic Acid: A New Player of Epigenetic Regulation in LPS-gingivalis Treated Human Periodontal Ligament Stem Cells. Oxid. Med. Cell Longev. 2021, 19, 6679708. [Google Scholar] [CrossRef] [PubMed]
- Pizzicannella, J.; Diomede, F.; Gugliandolo, A.; Chiricosta, L.; Bramanti, P.; Merciaro, I.; Orsini, T.; Mazzon, E.; Trubiani, O. 3D printing PLA/gingival stem cells/ EVs upregulate miR-2861 and -210 during osteoangiogenesis commitment. Int. J. Mol. Sci. 2019, 20, 3256. [Google Scholar] [CrossRef] [PubMed]
- Toraman, A.; Arabaci, T.; Aytekin, Z.; Albayrak, M.; Bayir, Y. Effects of vitamin C local application on ligature-induced periodontitis in diabetic rats. J. Appl. Oral. Sci. 2020, 28, e20200444. [Google Scholar] [CrossRef] [PubMed]
- Nisha, S.; Bettahalli, S.A.; Prashant, A.; Shashikumar, P.; Ganganna, A.; Das, D. Effect of non surgical periodontal therapy and vitamin C supplementation on total antioxidant capacity in patients with chronic generalised periodontitis—A randomised controlled trial. J. Oral. Biol. Craniofac. Res. 2023, 13, 511–516. [Google Scholar] [CrossRef] [PubMed]
- Reportlinker.com. Vitamin in United States Market Overview 2023–2027. Market Overview Report—August 2023. Available online: https://www.reportlinker.com/market-report/DietarySupplement/491893/Vitamin?term=vitamin%20market&matchtype=b&loc_interest=&loc_physical=1001521&utm_group=standard&utm_term=vitamin%20market&utm_campaign=ppc&utm_source=google_ads&utm_medium=paid_ads&utm_content=transactionnel-1&gad_source=1&gclid=Cj0KCQiAoeGuBhCBARIsAGfKY7zhBzXJNBNIrZsLN_yl_ToqZVUE3tEej-k2cbQ0Xe5pfewZ6qKEhykaAhuzEALw_wcB (accessed on 15 February 2024).
- Spoke Sciences. Available online: https://www.spokesciences.com (accessed on 15 February 2024).
- Gandhi, M.; Elfeky, O.; Ertugrul, H.; Chela, H.K.; Daglilar, E. Scurvy: Rediscovering a Forgotten Disease. Diseases 2023, 26, 78. [Google Scholar] [CrossRef] [PubMed]
- Lateef, A.; Darwesh, O.M.; Matter, I.A. Microbial nanobiotechnology: The melting pot of microbiology, microbial technology and nanotechnology. In Microbial Nanobiotechnology; Springer: Singapore, 2021; pp. 1–19. [Google Scholar]
- Mansor, N.I.; Nordin, N.; Mohamed, F.; Ling, K.H.; Rosli, R.; Hassan, Z. Crossing the blood-brain barrier: A review on drug delivery strategies for treatment of the central nervous system diseases. Curr. Drug Deliv. 2019, 16, 698–711. [Google Scholar] [CrossRef]
- Mughal, T.A.; Ali, S.; Hassan, A.; Kazmi, S.A.R.; Saleem, M.Z.; Shakir, H.A.; Nazer, S.; Farooq, M.A.; Awan, M.Z.; Khan, M.A.; et al. Phytochemical screening, antimicrobial activity, in vitro and in vivo antioxidant activity of Berberis lycium Royle root bark extract. Braz. J. Biol. 2021, 84, e249742. [Google Scholar] [CrossRef]
- Sionov, R.V.; Steinberg, D. Targeting the Holy Triangle of Quorum Sensing, Biofilm Formation, and Antibiotic Resistance in Pathogenic Bacteria. Microorganisms 2022, 16, 1239. [Google Scholar] [CrossRef]
- Assouline, S.; Miller, W.H. High-dose vitamin C therapy. Can. Med. Assoc. J. 2006, 174, 956–957. [Google Scholar] [CrossRef]
- Chu, K.O.; Chan, K.P.; Yang, Y.P.; Qin, Y.J.; Li, W.Y.; Chan, S.O.; Wang, C.C.; Pang, C.P. Effects of EGCG content in green tea extract on pharmacokinetics, oxidative status and expression of inflammatory and apoptotic genes in the rat ocular tissues. J. Nutr. Biochem. 2015, 26, 1357–1367. [Google Scholar] [CrossRef] [PubMed]
- Ramadhani, Y.; Rahmasari, R.R.P.; Prajnasari, K.N.; Alhakim, M.M.; Aljunaid, M.; Al-Sharani, H.M.; Tantiana, T.; Juliastuti, W.S.; Ridwan, R.D.; Diyatri, I. A mucoadhesive gingival patch with Epigallocatechin-3-gallate green tea (Camellia sinensis) as an alternative adjunct therapy for periodontal disease: A narrative review. Dent. J. 2022, 55, 114–119. [Google Scholar] [CrossRef]
- Lin, S.Y.; Kang, L.; Wang, C.Z.; Huang, H.H.; Cheng, T.L.; Huang, H.T.; Lee, M.J.; Lin, Y.S.; Ho, M.L.; Wang, G.J.; et al. (-)-Epigallocatechin-3-gallate (EGCG) enhances osteogenic differentiation of human bone marrow mesenchymal stem cells. Molecules 2018, 23, 3221. [Google Scholar] [CrossRef] [PubMed]
- Lashari, D.M.; Aljunaid, M.A.; Ridwan, R.D.; Diyatri, I.; Lashari, Y.; Qaid, H.; Surboyo, M.D.C. The ability of mucoadhesive gingival patch loaded with EGCG on IL-6 and IL-10 expression in periodontitis. J. Oral. Biol. Craniofac. Res. 2022, 12, 679–682. [Google Scholar] [CrossRef]
- Xu, D.; Hu, M.J.; Wang, Y.Q.; Cui, Y.L. Antioxidant activities of quercetin and its complexes for medicinal application. Molecules 2019, 24, 1123. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, C.; Wan, Y.; Qi, M.; Chen, Q.; Sun, Y.; Sun, X.; Fang, J.; Fu, L.; Xu, L.; et al. Quercetin-Loaded Ceria Nanocomposite Potentiate Dual-Directional Immunoregulation via Macrophage Polarization against Periodontal Inflammation. Small 2021, 17, e2101505. [Google Scholar] [CrossRef]
- Saha, S.; Buttari, B.; Panieri, E.; Profumo, E.; Saso, L. An Overview of Nrf2 Signaling Pathway and Its Role in Inflammation. Molecules 2020, 23, 5474. [Google Scholar] [CrossRef]
- Wardyn, J.D.; Ponsford, A.H.; Sanderson, C.M. Dissecting molecular cross-talk between Nrf2 and NF-κB response pathways. Biochem. Soc. Trans. 2015, 43, 621–626. [Google Scholar] [CrossRef]
- Wei, Y.; Fu, J.; Wu, W.; Ma, P.; Ren, L.; Yi, Z.; Wu, J. Quercetin Prevents Oxidative Stress-Induced Injury of Periodontal Ligament Cells and Alveolar Bone Loss in Periodontitis. Drug Des. Devel. Ther. 2021, 15, 3509–3522. [Google Scholar] [CrossRef] [PubMed]
- Pandi-Perumal, S.R.; Zisapel, N.; Srinivasan, V.; Cardinali, D.P. Melatonin and sleep in aging population. Exp. Gerontol. 2005, 40, 911–925. [Google Scholar] [CrossRef] [PubMed]
- Lerner, A.B.; Case, J.D.; Takahashi, Y. Isolation of Melatonin and 5-Methoxyindole-3-acetic Acid from Bovine Pineal Glands. J. Biol. Chem. 1960, 235, 1992–1997. [Google Scholar] [CrossRef] [PubMed]
- Murch, S.J.; Erland, L.A.E. A Systematic Review of Melatonin in Plants: An Example of Evolution of Literature. Front. Plant Sci. 2021, 12, 1060. [Google Scholar] [CrossRef] [PubMed]
- Slominski, R.M.; Reiter, R.J.; Schlabritz-Loutsevitch, N.; Ostrom, R.S.; Slominski, A.T. Melatonin membrane receptors in peripheral tissues: Distribution and functions. Mol. Cell Endocrinol. 2012, 351, 152–166. [Google Scholar] [CrossRef] [PubMed]
- Purpura, S.; Fernandes, G.V.O.; Oliveira, F.P.; de Castro, F.C. Effects of Melatonin in the Non-Surgical Treatment of Periodontitis: A Systematic Review. Appl. Sci. 2022, 12, 11698. [Google Scholar] [CrossRef]
- Sheikh, Z.; Najeeb, S.; Khurshid, Z.; Verma, V.; Rashid, H.; Glogauer, M. Biodegradable Materials for Bone Repair and Tissue Engineering Applications. Materials 2015, 8, 5744–5794. [Google Scholar] [CrossRef] [PubMed]
- Konečná, B.; Chobodová, P.; Janko, J.; Baňasová, L.; Bábíčková, J.; Celec, P.; Tóthová, Ľ. The Effect of Melatonin on Periodontitis. Int. J. Mol. Sci. 2021, 27, 2390. [Google Scholar] [CrossRef] [PubMed]
- Laurindo, L.F.; de Carvalho, G.M.; de Oliveira, Z.B.; Figueira, M.E.; Direito, R.; de Alvares Goulart, R.; Buglio, D.S.; Barbalho, S.M. Curcumin-Based Nanomedicines in the Treatment of Inflammatory and Immunomodulated Diseases: An Evidence-Based Comprehensive Review. Pharmaceutics 2023, 10, 229. [Google Scholar] [CrossRef]
- Marton, L.T.; Barbalho, S.M.; Sloan, K.P.; Sloan, L.A.; Goulart, R.A.; Araújo, A.C.; Bechara, M.D. Curcumin, autoimmune and inflammatory diseases: Going beyond conventional therapy—A systematic review. Crit. Rev. Food Sci. Nutr. 2022, 62, 2140–2157. [Google Scholar] [CrossRef]
- Tan, L.; Cao, Z.; Chen, H.; Xie, Y.; Yu, L.; Fu, C.; Zhao, W.; Wang, Y. Curcumin reduces apoptosis and promotes osteogenesis of human periodontal ligament stem cells under oxidative stress in vitro and in vivo. Life Sci. 2021, 270, 119125. [Google Scholar] [CrossRef] [PubMed]
- Anuradha, B.R.; Bai, Y.D.; Sailaja, S.; Sudhakar, J.; Priyanka, M.; Deepika, V. Evaluation of Anti-Inflammatory Effects of Curcumin Gel as an Adjunct to Scaling and Root Planing: A Clinical Study. J. Int. Oral. Health 2015, 7, 90–93. [Google Scholar] [PubMed]
- Iova, G.M.; Calniceanu, H.; Popa, A.; Szuhanek, C.A.; Marcu, O.; Ciavoi, G.; Scrobota, I. The Antioxidant Effect of Curcumin and Rutin on Oxidative Stress Biomarkers in Experimentally Induced Periodontitis in Hyperglycemic Wistar Rats. Molecules 2021, 26, 1332. [Google Scholar] [CrossRef] [PubMed]
- Esterbauer, H.; Eckl, P.; Ortner, A. Possible Mutagens Derived from Lipids and Lipid Precursors. Mutat. Res./Rev. Genet. Toxicol. 1990, 238, 223–233. [Google Scholar] [CrossRef]
- Busch, C.J.; Binder, C.J. Malondialdehyde Epitopes as Mediators of Sterile Inflammation. Biochim. Et Biophys. Acta (BBA)-Mol. Cell Biol. Lipids 2017, 1862, 398–406. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Wang, L.; Zhu, M.; Zhang, L.; Yan, L. Properties and molecular mechanisms of resveratrol: A review. Pharmazie 2015, 70, 501–506. [Google Scholar]
- Gao, B.; Kong, Q.; Kemp, K.; Zhao, Y.S.; Fang, D. Analysis of sirtuin 1 expression reveals a molecular explanation of IL-2-mediated reversal of T-cell tolerance. Proc. Natl. Acad. Sci. USA 2012, 109, 899–904. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, Y.; Gaynor, R.B. Therapeutic potential of inhibition of the NF-kappaB pathway in the treatment of inflammation and cancer. J. Clin. Investig. 2001, 107, 135–142. [Google Scholar] [CrossRef]
- Ikeda, E.; Ikeda, Y.; Wang, Y.; Fine, N.; Sheikh, Z.; Viniegra, A.; Barzilay, O.; Ganss, B.; Tenenbaum, H.C.; Glogauer, M. Resveratrol derivative-rich melinjo seed extract induces healing in a murine model of established periodontitis. J. Periodontol. 2018, 89, 586–595. [Google Scholar] [CrossRef]
- Hevkalyuk, N.O. Clinical effectiveness of phytopreparatum “RESVERAZIN” in the complex treatment of generalized parodontitis. DOAJ 2018. [Google Scholar] [CrossRef]
- Shah, S.; Dhawan, V.; Holm, R.; Nagarsenker, M.S.; Perrie, Y. Liposomes: Advancements and innovation in the manufacturing process. Adv. Drug Deliv. Rev. 2020, 154–155, 102–122. [Google Scholar] [CrossRef] [PubMed]
- Wasti, J.; Wasti, A.; Singh, R. Efficacy of antioxidants therapy on progression of periodontal disease—A randomized control trial. Indian J. Dent. Res. 2021, 32, 187–191. [Google Scholar]
- Bengi, V.U.; Saygun, V.; Bal, V.; Ozcanm, E.; Kose Ozkan, C.; Torun, D.; Aycu, F.; Kantarci, A. Effect of antioxidant lycopene on human osteoblasts. Clin. Oral. Investig. 2023, 27, 1637–1643. [Google Scholar] [CrossRef] [PubMed]
- Muhammed, S.; Kadhim, N.; Ali, S. The effect of Zingiber, Alpinia officinarum with periodontal therapy on clinical outcome and oxidative stress. J. Hunan Univ. (Nat. Sci.) 2022, 49, 32–43. [Google Scholar] [CrossRef]
- Salih, T.S.M.; Issa, N.K.; Mohammed, S.A. The effect of Pepper Nigrum, Olea Europaea mouthwash with non surgical periodontal therapy on clinical outcome and oxidative stress in chronic periodontitis patients. J. Duhok Univ. 2021, 24, 103–113. [Google Scholar]
- Sanghavi, A.; Shettigar, L.; Chopra, A.; Shah, A.; Lobo, R.; Shenoy, P.A.; Gadag, S.; Nayak, U.Y.; Shravya, S.M.; Kamath, S.U.; et al. Efficacy of Lycium barbarum (Goji berry) mouthwash for managing periodontitis: A randomized clinical trial [version 2; peer review: 2 approved with reservations]. F1000Research 2023, 12, 302. [Google Scholar]
- Ramamoorthy, J.; Rajasekar, A.; Rajeshkumar, S. Preparation of Mouthwash Using Red Tea and Its Antimicrobial and Antioxidant Activity. J. Pharm. Res. Int. 2021, 33, 287–296. [Google Scholar] [CrossRef]
- Muddathir, A.M.; Mohieldin, E.A.M.; Mitsunaga, T. In vitro activities of Acacia nilotica (L.) Delile bark fractions against Oral Bacteria, Glucosyltransferase and as antioxidant. BMC Complement. Med. Ther. 2020, 23, 360. [Google Scholar] [CrossRef]
- Nugraha, A.P.; Sibero, M.T.; Nugraha, A.P.; Puspitaningrum, M.S.; Rizqianti, Y.; Rahmadhani, D.; Kharisma, V.D.; Ramadhani, N.F.; Ridwan, R.D.; Noor, T.N.E.B.T.A.; et al. Anti-Periodontopathogenic Ability of Mangrove Leaves (Aegiceras corniculatum) Ethanol Extract: In silico and in vitro study. Eur. J. Dent. 2023, 17, 46–56. [Google Scholar] [CrossRef]
- Ansiliero, R.; Baratto, C.M.; Megiolaro, F.; Gelinski, J.M.L.N. (Antimicrobial and antioxidant activity of hydroalcoholic extracts of bee propolis (Tetragonisca angustula) and/or Calendula officinalis and potential use in mouthwash formulation/Atividade antimicrobiana e antioxidante de extratos hidroalcoólicos de propolis de abelha (Tetragonisca angustula) e/ou Calendula officinalis e potencial uso na formulação de enxaguantes bucais. Braz. J. Dev. 2022, 8, 27211–27230. [Google Scholar]
- Poorkazemi, D.; Malekzadeh, S.A.; Nasiri, P.; Aarabi, M.; Mehrani, S.J. Evaluation of Aloe vera as a Natural Pharmaceutic in Mouthwashes: A Narrative Review. Jundishapur J. Nat. Pharm. Prod. 2022, 17, e122155. [Google Scholar] [CrossRef]
- Rathod, A.; Jaiswal, P.; Kale, B.; Masurkar, D. Comparative Evaluation of the Effectiveness of Triphala and Chlorhexidine in Full-mouth Disinfection Treatment of Periodontitis in Type 2 Diabetes Patients. J. Contemp. Dent. Pract. 2023, 24, 798–801. [Google Scholar] [PubMed]
- Mehul, C.; Senthil, A.; Boey, H.J.; Lee, E.C. Comprehensive Review on Ficus deltoidea Effervescent Mouthwash Formulation in Treating Oral Pathogens. Int. J. Health Med. Sci. Acad. Res. Publ. Group 2021, 7, 63–75. [Google Scholar]
- Tahmasebi, E.; Maskani, P.; Farimani, M.M.; Mosaddad, S.A.; Hosseini, Z.S.; Ranjbar, R.; Salesi, M.; Yazdanian, M. Investigation of cytotoxicity and oral antibacterial effects of four biomaterials/herbal formulations. Biomass Conv. Bioref. 2023, 1–19. [Google Scholar] [CrossRef]
- Milia, E.P.; Sardellitti, L.; Eick, S. Antimicrobial Efficiency of Pistacia lentiscus L. Derivates against Oral Biofilm-Associated Diseases—A Narrative Review. Microorganisms 2023, 11, 1378. [Google Scholar] [CrossRef] [PubMed]
- Bhandary, S.; Shetty, M.S.; Sharma, D.; Tanna, D.A.; Jain, M. The Medicinal Chemistry of Curcuma longa: A Narrative Review. Bangladesh J. Med. Sci. 2023, 22, 67. [Google Scholar] [CrossRef]
- Ilangovan, S.; Rajasekar, A. Evaluation of Efficacy of 20% Nigella sativa on Gingival Health. J. Pharm. Res. Int. 2021, 33, 354–363. [Google Scholar] [CrossRef]
- Saravanan, R.; Ramamurthy, J. Evaluation of cytotoxic activity of Chrysopogon zizanioides mouthwash—An in vitro study. Int. J. Pharm. Res. 2020, 12 (Suppl. S11), 3193–3199. [Google Scholar]
- Thursby, J.G.; Thursby, M.C. Who is selling the ivory tower? Sources of growth in university licensing. Manag. Sci. 2002, 48, 90–104. [Google Scholar] [CrossRef]
- FMI—Future Market Insights. Available online: https://www.futuremarketinsights.com/reports/antioxidants-market (accessed on 12 December 2023).
- Markets and Markets. Available online: https://www.marketsandmarkets.com/Market-Reports/oral-care-market-80546246.html?gad_source=1&gclid=Cj0KCQiAm4WsBhCiARIsAEJIEzWCLkrJBi16B6RKjulGAzeW6sbXugBldOsYi8RPH3uEPX-kStvTdSwaAvUIEALw_wcB (accessed on 12 December 2023).
Title | Description | Assignees |
---|---|---|
(IN-405074) An oral local drug delivery (ldd) system for preventing and treating periodontal infections | The present invention relates to the drug delivery system for oral care, used in the management of periodontal diseases. Thereby, imparting its antibacterial, anti-inflammatory, and antioxidant activities, which result in the healing of periodontal tissues. | Deepavalli A Nainar Arumuga A Arun Kurumathur Vasudevan |
(CN117547509) Folic acid modified quercetin-peppermint oil microemulsion temperature-sensitive gel, preparation method and application thereof | The invention discloses a folic acid-modified, quercetin–peppermint oil, microemulsion temperature-sensitive gel, a preparation method, and applications thereof. The solubility of the quercetin is improved by the peppermint oil, and the folic acid-modified, quercetin–peppermint oil microemulsion can play a role in continuous free radical removal, anti-inflammation, and bone tissue regeneration promotion through targeting macrophages. | ANHUI UNIVERSITY OF CHINESE MEDICINE |
(CN114748607) Composition for relieving periodontal tissue diseases and application thereof | The invention discloses a composition for relieving periodontal tissue diseases and applications thereof, and relates to the field of oral care. It plays a role in activating blood and diminishing swelling and inflammation, promoting penetration into a wound to repair a wound surface to better relieve periodontal tissue diseases. | SHANGHAI YUNYAO ORAL MEDICAL TECHNOLOGY |
(CN117427034) Injectable antibacterial anti-inflammatory high internal phase emulsion and preparation method and application thereof | The invention relates to an injectable antibacterial, anti-inflammatory, high internal phase emulsion for promoting periodontal tissue regeneration and a preparation method thereof. | SOUTHWEST JIAOTONG UNIVERSITY |
(JP2017007978) Oral composition | To provide oral compositions that can inhibit periodontal disease safely, simply, and effectively, without inhibiting antimicrobial properties of flavonoids | SAN EI GEN F F I |
(EP2968089) Polyphenol/flavonoid compositions and methods of formulating oral hygienic products | Microemulsions and soluble alkali metal salts of relatively insoluble aglycone polyphenols within oral hygienic products are disclosed for treating oral inflammatory disorders. | VIZURI HEALTH SCIENCES |
(US20230381261) A Purified Extract Isolated from Agrimonia Coreana Nakai Containing Abundant Amount of Active Ingredient, the Preparation Thereof, the Composition Comprising the Same as an Active Ingredient for Preventing or Treating Inflammation, Allergy and Atopic Dermatitis and the Use Thereof | (US20230381261) The present invention relates to a purified extract isolated from Agrimonia coreana NAKAI for preventing or treating inflammation, allergy, and atopic dermatitis and the use thereof. | DONGGUK UNIVERSITY |
(EP2490543) Extracts, fractions and compositions comprising acetogenins and their applications | The present invention discloses acetogenin(s), extract(s)/fraction(s) derived from Annona squamosa or their compositions for the prevention, treatment, inhibition, or controlling of inflammation- and immune-related diseases or disorders, mediated through cytokines/chemokines or other biomarkers. | LAILA NUTRACEUTICALS |
(EP3908297) Fibroblast regenerative cells | Disclosed are compositions, systems, and methods comprising a regenerative fibroblast cell, population, or subsets thereof, possessing regenerative activity useful for the treatment of various degenerative diseases. | FIGENE |
(TWI751401) Pharmaceutical synergists for prevention and management of infectious diseases and related chronic diseases and methods thereof | A pharmaceutical composition containing phyto-polyphenols (P), clinical drugs with selective targets (T), and metal ions (M)(Cu2+, SeO32-, Ag+, Mn2+, VO42+, Zn2+, and Sr2+) for use in the prevention and therapy of infectious diseases, neurodegenerative diseases, dementia, diabetes, obesity, metabolic syndromes, periodontitis, dental caries, osteoporosis, cancers, and/or chronic pain. | CHUNG SHAN MEDICAL UNIVERSITY |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Juiz, P.J.L.; Ferreira, L.T.B.; Pires, E.A.; Villarreal, C.F. Patent Mining on the Use of Antioxidant Phytochemicals in the Technological Development for the Prevention and Treatment of Periodontitis. Antioxidants 2024, 13, 566. https://doi.org/10.3390/antiox13050566
Juiz PJL, Ferreira LTB, Pires EA, Villarreal CF. Patent Mining on the Use of Antioxidant Phytochemicals in the Technological Development for the Prevention and Treatment of Periodontitis. Antioxidants. 2024; 13(5):566. https://doi.org/10.3390/antiox13050566
Chicago/Turabian StyleJuiz, Paulo José Lima, Luiza Teles Barbalho Ferreira, Edilson Araújo Pires, and Cristiane Flora Villarreal. 2024. "Patent Mining on the Use of Antioxidant Phytochemicals in the Technological Development for the Prevention and Treatment of Periodontitis" Antioxidants 13, no. 5: 566. https://doi.org/10.3390/antiox13050566
APA StyleJuiz, P. J. L., Ferreira, L. T. B., Pires, E. A., & Villarreal, C. F. (2024). Patent Mining on the Use of Antioxidant Phytochemicals in the Technological Development for the Prevention and Treatment of Periodontitis. Antioxidants, 13(5), 566. https://doi.org/10.3390/antiox13050566