Modulatory Effects of Photobiomodulation on Oxidative and Inflammatory Responses in a Murine Model of Periodontitis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Experimental Periodontitis Model and PBM Protocol
2.3. Sample Collection and Processing
2.4. Experimental Periodontitis Confirmation
2.5. Intracellular ROS Levels
2.6. Gingival Cell Apoptosis
2.7. Systemic Inflammatory Activity and Oxidative Stress Evaluation
2.8. Serum Cytokines Quantitation
2.9. Statistical Analysis
3. Results
3.1. Confirmation of Experimental Periodontitis Model
3.2. PBM Reduces ROS Production and Apoptosis in Gingival Cells
3.3. Potential Systemic Anti-Inflammatory and Antioxidant Effects of PBM
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Papapanou, P.N.; Sanz, M.; Buduneli, N.; Dietrich, T.; Feres, M.; Fine, D.H.; Flemmig, T.F.; Garcia, R.; Giannobile, W.V.; Graziani, F.; et al. Periodontitis: Consensus report of Workgroup 2 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J. Clin. Periodontol. 2018, 45, S162–S170. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Oral Health Status Report: Towards Universal Health Coverage for Oral Health by 2030; World Health Organization: Geneva, Switzerland, 2022; Available online: https://www.who.int/publications/i/item/9789240061484 (accessed on 1 December 2022).
- Hajishengallis, G. Periodontitis: From microbial immune subversion to systemic inflammation. Nat. Rev. Immunol. 2015, 15, 30–44. [Google Scholar] [CrossRef] [PubMed]
- Mizraji, G.; Segev, H.; Wilensky, A.; Hovav, A.H. Isolation, processing and analysis of murine gingival cells. J. Vis. Exp. 2013, 77, e50388. [Google Scholar] [CrossRef]
- Fu, X.; Liu, B.; Sun, J.; Zhang, X.; Zhu, Z.; Wang, H.; Xiao, A.; Gan, X. Perturbation of mitochondrial dynamics links to the aggravation of periodontitis by diabetes. J. Histotechnol. 2023, 46, 139–150. [Google Scholar] [CrossRef]
- Wang, Y.; Andrukhov, O.; Rausch-Fan, X. Oxidative stress and antioxidant system in periodontitis. Front. Physiol. 2017, 8, 910. [Google Scholar] [CrossRef] [PubMed]
- Chatzopoulos, G.S.; Jiang, Z.; Marka, N.; Wolff, L.F. Periodontal disease, tooth loss, and systemic conditions: An exploratory study. Int. Dent. J. 2023, 74, 207–215. [Google Scholar] [CrossRef]
- Theodoro, L.H.; Marcantonio, R.A.C.; Wainwright, M.; Garcia, V.G. LASER in periodontal treatment: Is it an effective treatment or science fiction? Braz. Oral Res. 2021, 35, e099. [Google Scholar] [CrossRef]
- Sedghi, L.M.; Bacino, M.; Kapila, Y.L. Periodontal Disease: The Good, The Bad, and The Unknown. Front. Cell. Infect. Microbiol. 2021, 11, 766944. [Google Scholar] [CrossRef]
- Mussttaf, R.A.; Jenkins, D.F.L.; Jha, A.N. Assessing the impact of low-level laser therapy (LLLT) on biological systems: A review. Int. J. Radiat. Biol. 2019, 95, 120–143. [Google Scholar] [CrossRef]
- Marques, M.M.; Diniz, I.M.; de Cara, S.P.; Pedroni, A.C.; Abe, G.L.; D’Almeida-Couto, R.S.; Lima, P.L.; Tedesco, T.K.; Moreira, M.S. Photobiomodulation of Dental Derived Mesenchymal Stem Cells: A Systematic Review. Photomed. Laser Surg. 2016, 34, 500–508. [Google Scholar] [CrossRef]
- Jiang, W.; Wang, Y.; Cao, Z.; Chen, Y.; Si, C.; Sun, X.; Huang, S. The role of mitochondrial dysfunction in periodontitis: From mechanisms to therapeutic strategy. J. Periodontal Res. 2023, 58, 853–863. [Google Scholar] [CrossRef] [PubMed]
- Shakoush, G.; Albonni, H.; Almahdi, W. Low-level laser therapy has an additional effect with open flap debridement on the treatment of stage III periodontitis: A split-mouth randomized clinical trial. Quintessence Int. 2023, 54, 274–286. [Google Scholar] [CrossRef] [PubMed]
- Gholami, L.; Asefi, S.; Hooshyarfard, A.; Sculean, A.; Romanos, G.E.; Aoki, A.; Fekrazad, R. Photobiomodulation in periodontology and implant dentistry: Part 1. Photobiomodulation Photomed. Laser Surg. 2019, 37, 739–765. [Google Scholar] [CrossRef] [PubMed]
- Dompe, C.; Moncrieff, L.; Matys, J.; Grzech-Leśniak, K.; Kocherova, I.; Bryja, A.; Bruska, M.; Dominiak, M.; Mozdziak, P.; Skiba, T.H.I.; et al. Photobiomodulation-underlying mechanism and clinical applications. J. Clin. Med. 2020, 9, 1724. [Google Scholar] [CrossRef]
- Le, J.M.; Wu, J.H.; Jaw, F.S.; Su, C.T. The effect of bone remodeling with photobiomodulation in dentistry: A review study. Lasers Med. Sci. 2023, 38, 265. [Google Scholar] [CrossRef]
- Rupel, K.; Zupin, L.; Colliva, A.; Kamada, A.; Poropat, A.; Ottaviani, G.; Gobbo, M.; Fanfoni, L.; Gratton, R.; Santoro, M.; et al. Photobiomodulation at Multiple Wavelengths Differentially Modulates Oxidative Stress In Vitro and In Vivo. Oxid. Med. Cell. Longev. 2018, 2018, 6510159. [Google Scholar] [CrossRef]
- Miot, H.A. Cálculo amostral. J. Vasc. Bras. 2011, 10, 275–278. [Google Scholar] [CrossRef]
- Charan, J.; Kantharia, N.D. How to calculate sample size in animal studies? J. Pharmacol. Pharmacother. 2013, 4, 303–306. [Google Scholar] [CrossRef] [PubMed]
- Marchesan, J.; Girnary, M.S.; Jing, L.; Miao, M.Z.; Zhang, S.; Sun, L.; Morelli, T.; Schoenfisch, M.H.; Inohara, N.; Offenbacher, S.; et al. An experimental murine model to study periodontitis. Nat. Protoc. 2018, 13, 2247–2267. [Google Scholar] [CrossRef]
- Ribeiro, I.M.; de Souza Barroso, M.E.; Kampke, E.H.; Braga, L.T.F.; Campagnaro, B.P.; Meyrelles, S.D.S. Infrared laser therapy decreases systemic oxidative stress and inflammation in hypercholesterolemic mice with periodontitis. Lipids Health Dis. 2023, 22, 171. [Google Scholar] [CrossRef]
- Kocherova, I.; Bryja, A.; Błochowiak, K.; Kaczmarek, M.; Stefańska, K.; Matys, J.; Grzech-Leśniak, K.; Dominiak, M.; Mozdziak, P.; Kempisty, B.; et al. Photobiomodulation with red and near-infrared light improves viability and modulates expression of mesenchymal and apoptotic-related markers in human gingival fibroblasts. Materials 2021, 14, 3427. [Google Scholar] [CrossRef] [PubMed]
- Campagnaro, B.P.; Tonini, C.L.; Doche, L.M.; Nogueira, B.V.; Vasquez, E.C.; Meyrelles, S.S. Renovascular hypertension leads to DNA damage and apoptosis in bone marrow cells. DNA Cell Biol. 2013, 32, 458–466. [Google Scholar] [CrossRef] [PubMed]
- Bradley, P.P.; Christensen, R.D.; Rothstein, G. Cellular and extracellular myeloperoxidase in pyogenic inflammation. Blood 1982, 60, 618–622. [Google Scholar] [CrossRef] [PubMed]
- Ozenirler, S.; Erkan, G.; Konca Degertekin, C.; Ercin, U.; Cengiz, M.; Bilgihan, A.; Yilmaz, G.; Akyol, G. The relationship between advanced oxidation protein products (AOPP) and biochemical and histopathological findings in patients with nonalcoholic steatohepatitis. J. Dig. Dis. 2014, 15, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Lowe, L.; Wilson, J.D.; Crowther, E.; Tzeggai, K.; Bishop, J.E.; Varro, R. Simultaneous quantification of six human cytokines in a single sample using microparticle-based flow cytometric technology. Clin. Chem. 1999, 45, 1693–1694. [Google Scholar] [CrossRef]
- Wei, P.-F.; Ho, K.-Y.; Ho, Y.-P.; Wu, Y.-M.; Yang, Y.-H.; Tsai, C.-C. The investigation of glutathione peroxidase, lactoferrin, myeloperoxidase, and interleukin-1β in gingival crevicular fluid: Implications for oxidative stress in human periodontal diseases. J. Periodontal Res. 2004, 39, 287–293. [Google Scholar] [CrossRef]
- Huang, Y.Y.; Nagata, K.; Tedford, C.E.; McCarthy, T.; Hamblin, M.R. Low-level laser therapy (LLLT) reduces oxidative stress in primary cortical neurons in vitro. J. Biophotonics 2013, 6, 829–838. [Google Scholar] [CrossRef]
- Mostafavinia, A.; Ahmadi, H.; Amini, A.; Roudafshani, Z.; Hamblin, M.R.; Chien, S.; Bayat, M. The effect of photobiomodulation therapy on antioxidants and oxidative stress profiles of adipose-derived mesenchymal stem cells in diabetic rats. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 262, 120157. [Google Scholar] [CrossRef]
- Chen, A.C.; Arany, P.R.; Huang, Y.Y.; Tomkinson, E.M.; Sharma, S.K.; Kharkwal, G.B.; Saleem, T.; Mooney, D.; Yull, F.E.; Blackwell, T.S.; et al. Low-level laser therapy activates NF-kB via generation of reactive oxygen species in mouse embryonic fibroblasts. PLoS ONE 2011, 6, e22453. [Google Scholar] [CrossRef]
- Wang, L.; Liu, C.; Song, Y.; Wu, F. The effect of low-level laser irradiation on the proliferation, osteogenesis, inflammatory reaction, and oxidative stress of human periodontal ligament stem cells under inflammatory conditions. Lasers Med. Sci. 2022, 37, 3591–3599. [Google Scholar] [CrossRef]
- Li, S.; Tao, G. Perish in the attempt: Regulated cell death in regenerative and nonregenerative tissue. Antioxid. Redox Signal. 2023, 39, 1053–1069. [Google Scholar] [CrossRef] [PubMed]
- Faria, L.V.; Andrade, I.N.; dos Anjos, L.M.J.; de Paula, M.V.Q.; de Souza da Fonseca, A.; de Paoli, F. Photobiomodulation can prevent apoptosis in cells from mouse periodontal ligament. Lasers Med. Sci. 2020, 35, 1841–1848. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Xiao, J.; Ma, L.; Wang, C.; Wang, X.; Huang, X.; Cao, Z. Mitochondrial Dysfunction in Periodontitis and Associated Systemic Diseases: Implications for Pathomechanisms and Therapeutic Strategies. Int. J. Mol. Sci. 2024, 25, 1024. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.Y.; Sharma, S.K.; Carroll, J.; Hamblin, M.R. Biphasic dose response in low level light therapy—An update. Dose-Response 2011, 9, 602–618. [Google Scholar] [CrossRef] [PubMed]
- Hamblin, M.R. Mechanisms and applications of the anti-inflammatory effects of photobiomodulation. AIMS Biophys. 2017, 4, 337–361. [Google Scholar] [CrossRef]
- de Andrade Filho, V.O.; Amarante, M.O.C.; Gonzalez-Lima, F.; Gomes da Silva, S.; Cardoso, F.D.S. Systematic review of photobiomodulation for multiple sclerosis. Front. Neurol. 2024, 15, 1465621. [Google Scholar] [CrossRef]
- Ferreira, N.L.; Rocha, I.R.C.; Chacur, M. Unraveling the RAGE-NF-κB pathway: Implications for modulating inflammation in diabetic neuropathy through photobiomodulation therapy. Lasers Med. Sci. 2024, 39 (Suppl. 2), 222. [Google Scholar] [CrossRef]
- Uslu, M.Ö.; Eltas, A.; Marakoğlu, İ.; Dündar, S.; Şahin, K.; Özercan, İ.H. Effects of diode laser application on inflammation and MPO in periodontal tissues in a rat model. J. Appl. Oral Sci. 2018, 26, e20170266. [Google Scholar] [CrossRef]
- Melough, M.M.; Sun, X.; Chun, O.K. The Role of AOPP in Age-Related Bone Loss and the Potential Benefits of Berry Anthocyanins. Nutrients 2017, 9, 789. [Google Scholar] [CrossRef]
- Rupel, K.; Ottaviani, G. Changes in clinical and oxidative stress parameters in periodontal pockets treated with laser therapy: A preliminary split-mouth study. Lasers Surg. Med. 2018, 50, 365–366. [Google Scholar] [CrossRef]
- Li, C.; Liu, J.; Pan, J.; Wang, Y.; Shen, L.; Xu, Y. LC1s and ILC3s exhibit inflammatory phenotype in periodontal ligament of periodontitis patients. Front. Immunol. 2021, 12, 708678. [Google Scholar] [CrossRef]
- Chen, Y.; Jin, X.; Wang, Q.; Hu, S.; Huang, X. Causal role of immune cells in chronic periodontitis: A bidirectional Mendelian randomization study. BMC Oral Health 2024, 24, 806. [Google Scholar] [CrossRef] [PubMed]
- Papadelli, A.; Kyriakidou, K.; Kotsakis, G.A.; Pepelassi, E.; Kallis, A.; Vrotsos, I.A.; Karoussis, I.K. Immunomodulatory effects of Nd(1064 nm) and diode laser (810 nm) wavelengths to LPS-challenged human gingival fibroblasts. Arch. Oral Biol. 2021, 122, 104982. [Google Scholar] [CrossRef]
- Tian, T.; Wang, Z.; Chen, L.; Xu, W.; Wu, B. Photobiomodulation activates undifferentiated macrophages and promotes M1/M2 macrophage polarization via PI3K/AKT/mTOR signaling pathway. Lasers Med. Sci. 2023, 38, 86. [Google Scholar] [CrossRef]
- Saglam, M.; Kantarci, A.; Dundar, N.; Hakki, S.S. Clinical and biochemical effects of diode laser as an adjunct to nonsurgical treatment of chronic periodontitis: A randomized, controlled clinical trial. Lasers Med. Sci. 2014, 29, 37–46. [Google Scholar] [CrossRef]
- Gündoğar, H.; Şenyurt, S.Z.; Erciyas, K.; Yalım, M.; Üstün, K. The effect of low-level laser therapy on non-surgical periodontal treatment: A randomized controlled, single-blind, split-mouth clinical trial. Lasers Med. Sci. 2016, 31, 1767–1773. [Google Scholar] [CrossRef] [PubMed]
- Gur, A.T.; Guncu, G.N.; Akman, A.C.; Pinar, A.; Karabulut, E.; Nohutcu, R.M. Evaluation of GCF IL-17, IL-10, TWEAK, and sclerostin levels after scaling and root planing and adjunctive use of diode laser application in patients with periodontitis. J. Periodontol. 2022, 93, 1161–1172. [Google Scholar] [CrossRef]
- Costa, F.P.D.; Puty, B.; Nogueira, L.S.; Mitre, G.P.; Santos, S.M.D.; Teixeira, B.J.B.; Kataoka, M.S.D.S.; Martins, M.D.; Barboza, C.A.G.; Monteiro, M.C.; et al. Piceatannol increases antioxidant defense and reduces cell death in human periodontal ligament fibroblast under oxidative stress. Antioxidants 2019, 9, 16. [Google Scholar] [CrossRef]
- Porto, M.L.; Rodrigues, B.P.; Menezes, T.N.; Ceschim, S.L.; Casarini, D.E.; Gava, A.L.; Pereira, T.M.; Vasquez, E.C.; Campagnaro, B.P.; Meyrelles, S.S. Reactive oxygen species contribute to dysfunction of bone marrow hematopoietic stem cells in aged C57BL/6 J mice. J. Biomed. Sci. 2015, 22, 97. [Google Scholar] [CrossRef]
- Monteiro, M.M.; Amorim Dos Santos, J.; Paiva Barbosa, V.; Rezende, T.M.B.; Guerra, E.N.S. Photobiomodulation effects on fibroblasts and keratinocytes after ionizing radiation and bacterial stimulus. Arch. Oral Biol. 2024, 159, 105874. [Google Scholar] [CrossRef]
Groups/Parameters | C | C + PBM | P | P + PBM |
---|---|---|---|---|
IL-6 | 5.49 ± 0.29 | 5.83 ± 0.25 | 6.99 ± 0.27 * | 4.66 ± 0.22 # |
IL-12p70 | 16.94 ± 1.63 | 15.62 ± 0.31 | 24.36 ± 1.32 * | 18.54 ± 0.93 # |
IL-10 | 20.57 ± 0.84 | 20.46 ± 0.90 | 17.83 ± 0.30 * | 23.17 ± 0.36 # |
IFN-γ | 2.00 ± 0.08 | 2.06 ± 0.25 | 2.23 ± 0.16 | 2.33 ± 0.30 |
TNF | 17.70 ± 0.42 | 15.20 ± 0.33 | 16.68 ± 0.77 | 16.97 ± 0.70 |
MCP-1 | 48.83 ± 1.28 | 46.69 ± 2.35 | 55.61 ± 5.61 | 50.83 ± 0.73 |
IL-6/IL-10 | 0.25 ± 0.02 | 0.27 ± 0.00 | 0.39 ± 0.02 * | 0.20 ± 0.01 # |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Braga, L.T.F.; Ribeiro, I.M.; Barroso, M.E.d.S.; Kampke, E.H.; Neves, L.N.S.; Andrade, S.C.; Barbosa, G.H.; Porto, M.L.; Meyrelles, S.S. Modulatory Effects of Photobiomodulation on Oxidative and Inflammatory Responses in a Murine Model of Periodontitis. Antioxidants 2024, 13, 1450. https://doi.org/10.3390/antiox13121450
Braga LTF, Ribeiro IM, Barroso MEdS, Kampke EH, Neves LNS, Andrade SC, Barbosa GH, Porto ML, Meyrelles SS. Modulatory Effects of Photobiomodulation on Oxidative and Inflammatory Responses in a Murine Model of Periodontitis. Antioxidants. 2024; 13(12):1450. https://doi.org/10.3390/antiox13121450
Chicago/Turabian StyleBraga, Larissa Trarbach Figueiredo, Isadora Martins Ribeiro, Maria Eduarda de Souza Barroso, Edgar Hell Kampke, Lorena Nascimento Santos Neves, Sara Cecília Andrade, Guilherme Heleodoro Barbosa, Marcella Leite Porto, and Silvana Santos Meyrelles. 2024. "Modulatory Effects of Photobiomodulation on Oxidative and Inflammatory Responses in a Murine Model of Periodontitis" Antioxidants 13, no. 12: 1450. https://doi.org/10.3390/antiox13121450
APA StyleBraga, L. T. F., Ribeiro, I. M., Barroso, M. E. d. S., Kampke, E. H., Neves, L. N. S., Andrade, S. C., Barbosa, G. H., Porto, M. L., & Meyrelles, S. S. (2024). Modulatory Effects of Photobiomodulation on Oxidative and Inflammatory Responses in a Murine Model of Periodontitis. Antioxidants, 13(12), 1450. https://doi.org/10.3390/antiox13121450