Effect of Filtration Process on Oxidative Stability and Minor Compounds of the Cold-Pressed Hempseed Oil during Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Production of Non-Filtered and Filtered Cold-Pressed Hempseed Oils
2.2. Samples
2.3. Materials and Reagents
2.4. Physicochemical Properties
2.5. FA Composition
2.6. Tocopherols
2.7. Pigments and Polyphenols
2.8. Squalene
2.9. Element Analysis
2.10. Statistical Analysis
3. Results
3.1. Hydrolytic and Oxidative Status of Cold-Pressed Hempseed Oils
3.2. FA Composition
3.3. Tocopherols
3.4. Chlorophylls, Carotenes, and Polyphenols
3.5. Squalene
3.6. Inorganic Elements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Small, E.; Cronquist, A. A practical and natural taxonomy for Cannabis. Taxon 1976, 25, 405–435. [Google Scholar] [CrossRef]
- Rapa, M.; Ciano, S.; Rocchi, A.; D’Ascenzo, F.; Ruggieri, R.; Vinci, G. Hempseed Oil Quality Parameters: Optimization of Sustainable Methods by Miniaturization. Sustainability 2019, 11, 3104. [Google Scholar] [CrossRef] [Green Version]
- Faeti, V.; Mandolino, G.; Ranalli, P. Genetic diversity of Cannabis sativa germplasm based on RAPD markers. Plant Breed. 1996, 115, 367–370. [Google Scholar] [CrossRef]
- Cerino, P.; Buonerba, C.; Cannazza, G.; D’Auria, J.; Ottoni, E.; Fulgione, A.; Di Stasio, A.; Pierri, B.; Gallo, A. A review of hemp as food and nutritional supplement. Cannabis Cannabinoid Res. 2021, 6, 19–27. [Google Scholar] [CrossRef] [Green Version]
- Sgrò, S.; Lavezzi, B.; Caprari, C.; Polito, M.; D’Elia, M.; Lago, G.; Furlan, G.; Girotti, S.; Ferri, E.N. Delta9-THC determination by the EU official method: Evaluation of measurement uncertainty and compliance assessment of hemp samples. Anal. Bioanal. Chem. 2021, 413, 3399–3410. [Google Scholar] [CrossRef] [PubMed]
- Ranalli, P.; Venturi, G. Hemp as a raw material for industrial applications. Euphytica 2004, 140, 1–6. [Google Scholar] [CrossRef]
- Karus, M.; Vogt, D. European hemp industry: Cultivation, processing, and product lines. Euphytica 2004, 140, 7–12. [Google Scholar] [CrossRef]
- Farinon, B.; Molinari, R.; Costantini, L.; Merendino, N. The seed of industrial hemp (Cannabis sativa L.): Nutritional quality and potential functionality for human health and nutrition. Nutrients 2020, 12, 1935. [Google Scholar] [CrossRef]
- Callaway, J.C. Hempseed as a nutritional resource: An overview. Euphytica 2004, 140, 65–72. [Google Scholar] [CrossRef]
- Kriese, U.; Schumann, E.; Weber, W.E.; Beyer, M.; Brühl, L. Oil content, tocopherol composition and fatty acid patterns of the seeds of 51 Cannabis sativa L. genotypes. Euphytica 2004, 137, 339–351. [Google Scholar] [CrossRef]
- Sorrentino, G. Introduction to emerging industrial applications of cannabis (Cannabis sativa L.). Rend. Lincei Sci. Fis. Nat. 2021, 32, 233–243. [Google Scholar] [CrossRef] [PubMed]
- Kostadinovik, S.; Mitrev, S. Characterization of fatty acid profile, polyphenolic content, and antioxidant activity of cold pressed and refined edible oils from Macedonia. J. Food Chem. Nutr. 2013, 1–6. [Google Scholar]
- Verhé, R.; Verleyen, T.; Van Hoed, V.; De Greyt, W. Influence of refining of vegetable oils on minor components. J. Oil Palm Res. 2006, 4, 168–179. [Google Scholar]
- Cicero, N.; Albergamo, A.; Salvo, A.; Bua, G.D.; Bartolomeo, G.; Mangano, V.; Rotondo, A.; Di Stefano, V.; Di Bella, G.; Dugo, G. Chemical characterization of a variety of cold-pressed gourmet oils available on the Brazilian market. Food Res. Int. 2018, 109, 517–525. [Google Scholar] [CrossRef] [PubMed]
- Albergamo, A.; Costa, R.; Dugo, G. Cold pressed lemon (Citrus limon) seed oil. In Cold Pressed Oils, 1st ed.; Ramadan, M.F., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 159–180. [Google Scholar]
- Siudem, P.; Wawer, I.; Paradowska, K. Rapid evaluation of edible hemp oil quality using NMR and FT-IR spectroscopy. J. Mol. Struct. 2019, 1177, 204–208. [Google Scholar] [CrossRef]
- Matthäus, B.; Brühl, L. Virgin hemp seed oil: An interesting niche product. Eur. J. Lipid Sci. Technol. 2008, 110, 655–661. [Google Scholar] [CrossRef]
- Lemke, S.L.; Maki, K.C.; Hughes, G.; Taylor, M.L.; Krul, E.S.; Goldstein, D.A.; Su, H.; Rains, T.M.; Mukherjea, R. Consumption of stearidonic acid− rich oil in foods increases red blood cell eicosapentaenoic acid. J. Acad. Nutr. Diet 2013, 113, 1044–1056. [Google Scholar] [CrossRef]
- Blasi, F.; Tringaniello, C.; Verducci, G.; Cossignani, L. Bioactive minor components of Italian and Extra-European hemp seed oils. LWT 2022, 158, 113–167. [Google Scholar] [CrossRef]
- Izzo, L.; Pacifico, S.; Piccolella, S.; Castaldo, L.; Narváez, A.; Grosso, M.; Ritieni, A. Chemical analysis of minor bioactive components and cannabidiolic acid in commercial hemp seed oil. Molecules 2020, 25, 3710. [Google Scholar] [CrossRef]
- Castelo-Branco, V.N.; Santana, I.; Di-Sarli, V.O.; Freitas, S.P.; Torres, A.G. Antioxidant capacity is a surrogate measure of the quality and stability of vegetable oils. Eur. J. Lipid Sci. Technol. 2016, 118, 224–235. [Google Scholar] [CrossRef]
- Liu, R.; Lu, M.; Zhang, T.; Zhang, Z.; Jin, Q.; Chang, M.; Wang, X. Evaluation of the antioxidant properties of micronutrients in different vegetable oils. Eur. J. Lipid Sci. Technol. 2020, 122, 1900079. [Google Scholar] [CrossRef]
- Liang, J.; Aachary, A.A.; Hydamaka, A.; Eskin, N.M.; Eck, P.; Thiyam-Holländer, U. Reduction of chlorophyll in cold-pressed hemp (Cannabis sativa) seed oil by ultrasonic bleaching and enhancement of oxidative stability. Eur. J. Lipid Sci. Technol. 2018, 120, 1700349. [Google Scholar] [CrossRef]
- Grosshagauer, S.; Steinschaden, R.; Pignitter, M. Strategies to increase the oxidative stability of cold pressed oils. LWT 2019, 106, 72–77. [Google Scholar] [CrossRef]
- Choe, E.; Min, D.B. Mechanisms and factors for edible oil oxidation. Compr. Rev. Food Sci. Food Saf. 2006, 5, 169–186. [Google Scholar] [CrossRef]
- Aachary, A.A.; Liang, J.; Hydamaka, A.; Eskin, N.M.; Thiyam-Holländer, U. A new ultrasound-assisted bleaching technique for impacting chlorophyll content of cold-pressed hempseed oil. LWT 2016, 72, 439–446. [Google Scholar] [CrossRef]
- Blasi, F.; Cossignani, L. An Overview of Natural Extracts with Antioxidant Activity for the Improvement of the Oxidative Stability and Shelf Life of Edible Oils. Processes 2020, 8, 956. [Google Scholar] [CrossRef]
- Moczkowska, M.; Karp, S.; Horbanczuk, O.K.; Hanula, M.; Wyrwisz, J.; Kurek, M.A. Effect of rosemary extract addition on oxidative stability and quality of hemp seed oil. Food Bioprod. Process. 2020, 124, 33–47. [Google Scholar] [CrossRef]
- Tura, M.; Mandrioli, M.; Valli, E.; Rubino, R.C.; Parentela, D.; Toschi, T.G. Changes in the composition of a cold-pressed hemp seed oil during three months of storage. J. Food Compost Anal. 2022, 106, 104270. [Google Scholar] [CrossRef]
- Özdemir, H.; Bakkalbaşı, E.; Javidipour, I. Effect of seed roasting on oxidative stability and antioxidant content of hemp seed oil. J. Food Sci. Technol. 2021, 58, 2606–2616. [Google Scholar] [CrossRef]
- Van Hoed, V.; Barbouche, I.; De Clercq, N.; Dewettinck, K.; Slah, M.; Leber, E.; Verhé, R. Influence of filtering of cold pressed berry seed oils on their antioxidant profile and quality characteristics. Food Chem. 2011, 127, 1848–1855. [Google Scholar] [CrossRef]
- Prescha, A.; Grajzer, M.; Dedyk, M.; Grajeta, H. The antioxidant activity and oxidative stability of cold-pressed oils. J. Am. Oil Chem. Soc. 2014, 91, 1291–1301. [Google Scholar] [CrossRef] [Green Version]
- Costa, R.; Bartolomeo, G.; Saija, E.; Rando, R.; Albergamo, A.; Dugo, G. Determination of alkyl esters content in PDO extra virgin olive oils from Sicily. J. Food Qual. 2017, 2017, 7. [Google Scholar] [CrossRef] [Green Version]
- Sdiri, W.; Dabbou, S.; Chehab, H.; Selvaggini, R.; Servili, M.; Di Bella, G.; Mansour, H.B. Quality characteristics and chemical evaluation of Chemlali olive oil produced under dairy wastewater irrigation. Agric. Water Manag. 2020, 236, 106124. [Google Scholar] [CrossRef]
- Albergamo, A.; Vadalà, R.; Metro, D.; Giuffrida, D.; Monaco, F.; Pergolizzi, S.; Leonardi, M.; Bartolomeo, G.; Petracci, M.; Cicero, N. Effect of Dietary Enrichment with Flaxseed, Vitamin E and Selenium, and of Market Class on the Broiler Breast Meat—Part 2: Technological and Sensorial Traits. Foods 2022, 11, 2567. [Google Scholar] [CrossRef]
- Aghraz, A.; Albergamo, A.; Benameur, Q.; Salvo, A.; Larhsini, M.; Markouk, M.; Gervasi, T.; Cicero, N. Polyphenols contents, heavy metals analysis and in vitro antibacterial activity of extracts from Cladanthus arabicus and Bubonium imbricatum of Moroccan origin. Nat. Prod. Res. 2020, 34, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Vadalà, R.; Nava, V.; Lo Turco, V.; Potortì, A.G.; Costa, R.; Rando, R.; Ben Mansour, H.; Ben Amor, N.; Beltifa, A.; Santini, A.; et al. Tunisian edible oils from agro-industrial waste: Nutritional and healthy value. Agriculture 2023, 13, 1096. [Google Scholar] [CrossRef]
- Ben Amor, N.; Nava, V.; Albergamo, A.; Potortì, A.G.; Lo Turco, V.; Ben Mansour, H.; Di Bella, G. Tunisian essential oils as potential food antimicrobials and antioxidants and screening of their element profile. Eur. Food Res. Technol. 2021, 247, 1221–1234. [Google Scholar] [CrossRef]
- Bua, G.D.; Albergamo, A.; Annuario, G.; Zammuto, V.; Costa, R.; Dugo, G. High-throughput ICP-MS and chemometrics for exploring the major and trace element profile of the Mediterranean sepia ink. Food Anal. Methods 2017, 10, 1181–1190. [Google Scholar] [CrossRef]
- Codex Alimentarius Commission. Codex Standard for Edible Fats and Oils not Covered by Individual Standards (CODEX STAN 19-1981, Rev. 2–1999); FAO/WHO: Rome, Italy, 1999. [Google Scholar]
- Lercker, G.; Frega, N.; Bocci, F.; Servidio, G. “Veiled” extra-virgin olive oils: Dispersion response related to oil quality. J. Am. Oil Chem. Soc. 1994, 71, 657–658. [Google Scholar] [CrossRef]
- Tura, M.; Mandrioli, M.; Valli, E.; Toschi, T.G. Quality indexes and composition of 13 commercial hemp seed oils. J. Food Compos. Anal. 2023, 117, 105112. [Google Scholar] [CrossRef]
- Calzolari, D.; Rocchetti, G.; Lucini, L.; Amaducci, S. The variety, terroir, and harvest types affect the yield and the phenolic and sterolic profiles of hemp seed oil. Food Res. Int. 2021, 142, 110212. [Google Scholar] [CrossRef] [PubMed]
- Jian, F.; Al Mamun, M.A.; White, N.D.; Jayas, D.S.; Fields, P.G.; McCombe, J. Safe storage times of FINOLA® hemp (Cannabis sativa) seeds with dockage. J. Stored Prod. Res. 2019, 83, 34–43. [Google Scholar] [CrossRef]
- Fregapane, G.; Lavelli, V.; León, S.; Kapuralin, J.; Desamparados Salvador, M. Effect of filtration on virgin olive oil stability during storage. Eur. J. Lipid. Sci. Technol. 2006, 108, 134–142. [Google Scholar] [CrossRef]
- Frega, N.; Mozzon, M.; Lercker, G. Effects of free fatty acids on oxidative stability of vegetable oil. J. Am. Oil Chem. Soc. 1999, 76, 325–329. [Google Scholar] [CrossRef]
- Cuvelier, M.E.; Soto, P.; Courtois, F.; Broyart, B.; Bonazzi, C. Oxygen solubility measured in aqueous or oily media by a method using a non-invasive sensor. Food Cont. 2017, 73, 1466–1473. [Google Scholar] [CrossRef]
- Tura, M.; Ansorena, D.; Astiasarán, I.; Mandrioli, M.; Toschi, T.G. Evaluation of hemp seed oils stability under accelerated storage test. Antioxidants 2022, 11, 490. [Google Scholar] [CrossRef]
- Parenti, A.; Spugnoli, P.; Masella, P.; Calamai, L. Influence of the extraction process on dissolved oxygen in olive oil. Eur. J. Lipid Sci. Technol. 2007, 109, 1180–1185. [Google Scholar] [CrossRef]
- Lukešová, D.; Dostálová, J.; Mahmoud, E.A.E.M.; Svárovská, M. Oxidation changes of vegetable oils during microwave heating. Czech J. Food Sci. 2009, 27, S178–S181. [Google Scholar] [CrossRef] [Green Version]
- Nyam, K.L.; Wong, M.M.; Long, K.; Tan, C.P. Oxidative stability of sunflower oils supplemented with kenaf seeds extract, roselle seeds extract and roselle extract, respectively under accelerated storage. Int. Food Res. J. 2013, 20, 695–701. [Google Scholar]
- Okogeri, O.; Tasioula-Margari, M. Changes occurring in phenolic compounds and α-tocopherol of virgin olive oil during storage. J. Agric. Food Chem. 2002, 50, 1077–1080. [Google Scholar] [CrossRef]
- Shendi, E.G.; Ozay, D.S.; Ozkaya, M.T. Effects of filtration process on the minor constituents and oxidative stability of virgin olive oil during 24 months storage time. OCL 2020, 27, 37. [Google Scholar] [CrossRef]
- Tsimidou, M.Z.; Georgiou, A.; Koidis, A.; Boskou, D. Loss of stability of “veiled”(cloudy) virgin olive oils in storage. Food Chem. 2005, 93, 377–383. [Google Scholar] [CrossRef]
- Guerrini, L.; Zanoni, B.; Breschi, C.; Angeloni, G.; Masella, P.; Calamai, L.; Parenti, A. Understanding olive oil stability using filtration and high hydrostatic pressure. Molecules 2020, 25, 420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bubola, K.B.; Lukić, M.; Mofardin, I.; Butumović, A.; Koprivnjak, O. Filtered vs. naturally sedimented and decanted virgin olive oil during storage: Effect on quality and composition. LWT 2017, 84, 370–377. [Google Scholar] [CrossRef]
- Fortini, M.; Migliorini, M.; Cherubini, C.; Cecchi, L.; Guerrini, L.; Masella, P.; Parenti, A. Shelf life and quality of olive oil filtered without vertical centrifugation. Eur. J. Lipid Sci. Technol. 2016, 118, 1213–1222. [Google Scholar] [CrossRef]
- Sacchi, R.; Caporaso, N.; Paduano, A.; Genovese, A. Industrial-scale filtration affects volatile compounds in extra virgin olive oil cv. Ravece. Eur. J. Lipid Sci. Technol. 2015, 117, 2007–2014. [Google Scholar] [CrossRef]
- Baldini, M.; Ferfuia, C.; Piani, B.; Sepulcri, A.; Dorigo, G.; Zuliani, F.; Danuso, F.; Cattivello, C. The performance and potentiality of monoecious hemp (Cannabis sativa L.) cultivars as a multipurpose crop. Agronomy 2018, 8, 162. [Google Scholar] [CrossRef] [Green Version]
- Esmaeilzadeh Kenari, R.; Dehghan, B. Optimization of ultrasound-assisted solvent extraction of hemp (Cannabis sativa L.) seed oil using RSM: Evaluation of oxidative stability and physicochemical properties of oil. Food Sci. Nutr. 2020, 8, 4976–4986. [Google Scholar] [CrossRef]
- Mikulcová, V.; Kašpárková, V.; Humpolíček, P.; Buňková, L. Formulation, characterization and properties of hemp seed oil and its emulsions. Molecules 2017, 22, 700. [Google Scholar] [CrossRef] [Green Version]
- Golimowski, W.; Teleszko, M.; Zając, A.; Kmiecik, D.; Grygier, A. Effect of the bleaching process on changes in the fatty acid profile of raw hemp seed oil (Cannabis sativa). Molecules 2023, 28, 769. [Google Scholar] [CrossRef]
- Golimowski, W.; Teleszko, M.; Marcinkowski, D.; Kmiecik, D.; Grygier, A.; Kwaśnica, A. Quality of oil pressed from hemp seed varieties:‘Earlina 8FC’,‘Secuieni Jubileu’and ‘Finola’. Molecules 2022, 27, 3171. [Google Scholar] [CrossRef] [PubMed]
- Oomah, B.D. Hempseed: A functional food source. Mol. Mechan. Funct. Food 2022, 269–356. [Google Scholar]
- Madhujith, T.; Sivakanthan, S. Oxidative Stability of Edible Plants Oils, 1st ed.; Springer Nature: Berlin, Germany, 2019. [Google Scholar]
- Rastrelli, L.; Passi, S.; Ippolito, F.; Vacca, G.; De Simone, F. Rate of degradation of α-tocopherol, squalene, phenolics, and polyunsaturated fatty acids in olive oil during different storage conditions. J. Agric. Food Chem. 2002, 50, 5566–5570. [Google Scholar] [CrossRef] [PubMed]
- Pal, U.S.; Patra, R.K.; Sahoo, N.R.; Bakhara, C.K.; Panda, M.K. Effect of refining on quality and composition of sunflower oil. J. Food Sci. Technol. 2015, 52, 4613–4618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pestana, V.R.; Zambiazi, R.C.; Mendonça, C.R.B.; Bruscatto, M.H.; Lerma-García, M.J.; Ramis-Ramos, G. Quality changes and tocopherols and γ-Orizanol concentrations in rice bran oil during the refining process. J. Am. Oil Chem. Soc. 2008, 85, 1013–1019. [Google Scholar] [CrossRef]
- Aluyor, E.O.; Aluyor, P.; Ozigagu, C.E. Effect of refining on the quality and composition of groundnut oil. Afr. J. Food Sci. 2009, 3, 201–205. [Google Scholar]
- Grajzer, M.; Szmalcel, K.; Kuźmiński, Ł.; Witkowski, M.; Kulma, A.; Prescha, A. Characteristics and antioxidant potential of cold-pressed oils—Possible strategies to improve oil stability. Foods 2020, 9, 1630. [Google Scholar] [CrossRef]
- Ciano, S.; Maddaloni, L.; Rapa, M.; Tarola, A.M. Organic hempseed oil from the retail market: Chemical profiling and multivariate analysis for label information assessment. Br. Food J. 2022, 125, 415–432. [Google Scholar] [CrossRef]
- Occhiuto, C.; Aliberto, G.; Ingegneri, M.; Trombetta, D.; Circosta, C.; Smeriglio, A. Comparative evaluation of the nutrients, phytochemicals, and antioxidant activity of two hempseed oils and their byproducts after cold pressing. Molecules 2022, 27, 3431. [Google Scholar] [CrossRef]
- Gliszczynska-Swiglo, A.; Sikorska, E.; Khmelinskii, I.; Sikorski, M. Tocopherol content in edible plant oils. Polish J. Food Nutr. Sci. 2007, 57, 157–161. [Google Scholar]
- Mukai, K. Synthesis and kinetic study of antioxidant and prooxidant actions of vitamin E derivatives. J. Jap. Chem. Soc. 1991, 40, 1063–1072. [Google Scholar] [CrossRef] [Green Version]
- Abramovič, H.; Butinar, B.; Nikolič, V. Changes occurring in phenolic content, tocopherol composition and oxidative stability of Camelina sativa oil during storage. Food Chem. 2007, 104, 903–909. [Google Scholar] [CrossRef]
- Kim, H.J.; Lee, M.Y.; Min, D.B. Singlet oxygen oxidation rates of∝-, γ-, and δ-Tocopherols. J. Food Sci. 2006, 71, C465–C468. [Google Scholar] [CrossRef]
- Reische, D.W.; Lillard, D.; Eitenmiller, R.R. Antioxidants. In Food Lipids: Chemistry, Nutrition and Biotechnology, 2nd ed.; Akoh, C.C., Min, D.B., Eds.; Marcel Dekker Inc.: New York, NY, USA, 2002; pp. 507–534. [Google Scholar]
- Zuta, P.C.; Simpson, B.K.; Zhao, X.; Leclerc, L. The effect of α-tocopherol on the oxidation of mackerel oil. Food Chem. 2007, 100, 800–807. [Google Scholar] [CrossRef]
- Fuster, M.D.; Lampi, A.M.; Hopia, A.; Kamal-Eldin, A. Effects of α-and γ-tocopherols on the autooxidation of purified sunflower triacylglycerols. Lipids 1998, 33, 715–722. [Google Scholar] [CrossRef] [PubMed]
- Aladić, K.; Jarni, K.; Barbir, T.; Vidović, S.; Vladić, J.; Bilić, M.; Jokić, S. Supercritical CO2 extraction of hemp (Cannabis sativa L.) seed oil. Ind. Crops Prod. 2015, 76, 472–478. [Google Scholar] [CrossRef]
- Giuliani, A.A.; Cichelli, A.; Tonuccib, L.; d’Alessandroc, N. Chlorophyll photosensitized oxidation of virgin olive oil: A comparison between selected unsaturated model esters and real oil samples. Riv. Ital. Sostanze Grasse 2015, 92, 25. [Google Scholar]
- Petrović, S.; Zvezdanović, J.; Marković, D. Chlorophyll degradation in aqueous mediums induced by light and UV-B irradiation: An UHPLC-ESI-MS study. Radiat. Phys. Chem. 2017, 141, 8–16. [Google Scholar] [CrossRef]
- Palozza, P.; Krinsky, N.I. β-Carotene and α-tocopherol are synergistic antioxidants. Arch. Biochem. Biophys. 1992, 29, 184–187. [Google Scholar] [CrossRef]
- Rotkiewicz, D.; Konopka, I.; Tańska, M. Carotenoids and chlorophylls in plant oils and their functions. Oilseed Crops 2002, 23, 561–578. (In Polish) [Google Scholar]
- Paiva-Martins, F.; Gordon, M.H. Interactions of ferric ions with olive oil phenolic compounds. J. Agric. Food Chem. 2005, 53, 2704–2709. [Google Scholar] [CrossRef] [PubMed]
- Faugno, S.; Piccolella, S.; Sannino, M.; Principio, L.; Crescente, G.; Baldi, G.M.; Fiorentino, N.; Pacifico, S. Can agronomic practices and cold-pressing extraction parameters affect phenols and polyphenols content in hempseed oils? Ind. Crops Prod. 2019, 130, 511–519. [Google Scholar] [CrossRef]
- Babiker, E.E.; Uslu, N.; Al Juhaimi, F.; Ahmed, I.A.M.; Ghafoor, K.; Özcan, M.M.; Almusallam, I.A. Effect of roasting on antioxidative properties, polyphenol profile and fatty acids composition of hemp (Cannabis sativa L.) seeds. LWT 2021, 139, 110537. [Google Scholar] [CrossRef]
- Smeriglio, A.; Galati, E.M.; Monforte, M.T.; Lanuzza, F.; D’Angelo, V.; Circosta, C. Polyphenolic compounds and antioxidant activity of cold-pressed seed oil from Finola cultivar of Cannabis sativa L. Phytother. Res. 2016, 30, 1298–1307. [Google Scholar] [CrossRef]
- Di Bella, G.; Porretti, M.; Albergamo, A.; Mucari, C.; Tropea, A.; Rando, R.; Nava, V.; Lo Turco, V.; Potortì, A.G. Valorization of Traditional Alcoholic Beverages: The Study of the Sicilian Amarena Wine during Bottle Aging. Foods 2022, 11, 2152. [Google Scholar] [CrossRef]
- Daskalaki, D.; Kefi, G.; Kotsiou, K.; Tasioula-Margari, M. Evaluation of phenolic compounds degradation in virgin olive oil during storage and heating. J. Food Nutr. Res. 2009, 48, 31–41. [Google Scholar]
- Morelló, J.R.; Motilva, M.J.; Tovar, M.J.; Romero, M.P. Changes in commercial virgin olive oil (cv Arbequina) during storage, with special emphasis on the phenolic fraction. Food Chem. 2004, 85, 357–364. [Google Scholar] [CrossRef]
- Koski, A.; Psomiadou, E.; Tsimidou, M.; Hopia, A.; Kefalas, P.; Wähälä, K.; Heinonen, M. Oxidative stability and minor constituents of virgin olive oil and cold-pressed rapeseed oil. Eur. Food Res. Technol. 2002, 214, 294–298. [Google Scholar] [CrossRef]
- Gutiérrez-Luna, K.; Ansorena, D.; Astiasarán, I. Flax and hempseed oil functional ingredient stabilized by inulin and chia mucilage as a butter replacer in muffin formulations. J. Food Sci. 2020, 85, 3072–3080. [Google Scholar] [CrossRef] [PubMed]
- Montserrat-de la Paz, S.; Marín-Aguilar, F.; García-Gimenez, M.D.; Fernández-Arche, M.A. Hemp (Cannabis sativa L.) seed oil: Analytical and phytochemical characterization of the unsaponifiable fraction. J. Agric. Food Chem. 2014, 62, 1105–1110. [Google Scholar] [CrossRef]
- Feng, S.; Xu, X.; Tao, S.; Chen, T.; Zhou, L.; Huang, Y.; Yang, H.; Yuan, M.; Ding, C. Comprehensive evaluation of chemical composition and health-promoting effects with chemometrics analysis of plant derived edible oils. Food Chem. X 2022, 14, 100341. [Google Scholar] [CrossRef]
- Shi, T.; Zhu, M.; Zhou, X.; Huo, X.; Long, Y.; Zeng, X.; Chen, Y. 1H NMR combined with PLS for the rapid determination of squalene and sterols in vegetable oils. Food Chem. 2019, 287, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Nergiz, C.; Çelikkale, D. The effect of consecutive steps of refining on squalene content of vegetable oils. J. Food Sci. Technol. 2011, 48, 382–385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dessì, M.A.; Deiana, M.; Day, B.W.; Rosa, A.; Banni, S.; Corongiu, F.P. Oxidative stability of polyunsaturated fatty acids: Effect of squalene. Eur. J. Lipid Sci. Technol. 2002, 104, 506–512. [Google Scholar] [CrossRef]
- Psomiadou, E.; Tsimidou, M. Stability of virgin olive oil. 1. Autoxidation studies. J. Agric. Food Chem. 2002, 50, 716–721. [Google Scholar] [CrossRef] [PubMed]
- Rigane, G.; Bouaziz, M.; Sayadi, S.; Salem, R.B. Effect of storage on refined olive oil composition: Stabilization by addition of chlorophyll pigments and squalene. J. Oleo Sci. 2013, 62, 981–987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keceli, T.; Gordon, M.H. Ferric ions reduce the antioxidant activity of the phenolic fraction of virgin olive oil. J. Food Sci. 2002, 67, 943–947. [Google Scholar] [CrossRef]
NF-HO | F-HO | |||||||
---|---|---|---|---|---|---|---|---|
T0 | T4 | T8 | T12 | T0 | T4 | T8 | T12 | |
C16:0 | 7.20 ± 0.45 a | 6.30 ± 0.44 a,b | 6.82 ± 0.33 a,b | 5.87 ± 0.31 b | 6.77 ± 0.23 a | 5.62 ± 0.53 b | 5.57 ± 0.32 b | 5.53 ± 0.19 b |
C18:0 | 3.24 ± 0.29 a | 2.94 ± 0.08 a | 2.18 ± 0.34 a | 2.40 ± 0.67 a | 2.95 ± 0.08 a | 2.58 ± 0.61 a | 2.18 ± 0.12 a | 2.27 ± 0.08 a |
SFA | 10.44 ± 0.74 a | 9.24 ± 0.39 a,b | 9.00 ± 0.03 b,c | 8.27 ± 0.48 b,c | 9.72 ± 0.24 a | 8.20 ± 1.14 a,b | 7.75 ± 0.38 b | 7.80 ± 0.12 b |
C18:1 n-9 | 10.42 ± 1.08 a | 9.41 ± 1.03 a | 9.04 ± 0.23 a | 9.06 ± 0.67 a | 9.18 ± 0.33 a | 8.75 ± 0.21 a,b | 8.80 ± 0.33 a,b | 8.42 ± 0.19 b |
C18:1 n-7 | 0.93 ± 0.13 a | 1.13 ± 0.44 a | 0.96 ± 0.22 a | 0.87 ± 0.08 a | 1.00 ± 0.12 a | 0.88 ± 0.08 a | 0.81 ± 0.03 a | 0.87 ± 0.09 a |
MUFA | 11.35 ± 1.21 a | 10.54 ± 1.46 a | 10.01 ± 0.15 a | 9.93 ± 0.74 a | 10.18 ± 0.42 a | 9.63 ± 0.13 a,b | 9.61 ± 0.35 a,b | 9.29 ± 0.21 b |
C18:2 n-6 | 55.56 ± 0.61 a | 55.18 ± 1.62 a,b | 52.74 ± 0.90 b,c | 52.36 ± 0.87 c | 56.27 ± 0.40 a | 56.13 ± 1.25 a | 54.61 ± 0.64 a | 54.29 ± 0.49 a |
C18:3 n-6 | 5.34 ± 0.95 a | 5.47 ± 0.46 a | 5.86 ± 0.37 a | 5.40 ± 0.83 a | 5.18 ± 0.36 a | 4.89 ± 0.14 a | 4.71 ± 0.17 a | 4.94 ± 0.06 a |
C18:3 n-3 | 18.85 ± 0.75 a | 17.92 ± 0.34 a | 18.37 ± 0.76 a | 18.70 ± 0.35 a | 19.18 ± 0.40 a | 18.63 ± 0.68 a | 18.80 ± 0.33 a | 19.07 ± 0.19 a |
C18:4 n-3 | 0.99 ± 0.12 a | 0.90 ± 0.21 a | 1.00 ± 0.23 a | 1.25 ± 0.38 a | 1.02 ± 0.13 a | 0.99 ± 0.24 a | 1.33 ± 0.34 a,b | 1.76 ± 0.11 b |
PUFA | 80.74 ± 2.20 a | 79.47 ± 2.30 a | 77.97 ± 1.38 a | 77.71 ± 1.44 a | 81.87 ± 0.41 a | 80.64 ± 0.78 a,b | 79.44 ± 0.23 b | 80.06 ± 0.72 b |
PUFA/SFA | 7.77 ± 0.75 a | 8.62 ± 0.59 a,b | 8.67 ± 0.13 a,b | 9.41 ± 0.37 b | 8.43 ± 0.18 a | 9.98 ± 1.54 a | 10.27 ± 0.55 a | 10.27 ± 0.09 a |
n-6/n-3 | 3.07 ± 0.10 a | 3.22 ± 0.03 a,b | 3.03 ± 0.12 a | 2.90 ± 0.13 a,c | 3.05 ± 0.05 a | 3.11 ± 0.13 a,b | 2.95 ± 0.13 a | 2.84 ± 0.02 a,c |
Sample | α-Tocopherol | γ-Tocopherol | δ-Tocopherol | Reference |
---|---|---|---|---|
Commercial cold-pressed oils | 38.6–77.6 | 625.3–1013.2 | 14.0–35.1 | [19] |
Commercial hot/cold-pressed oils | 20.8–74.8 | 99.9–576.7 | 16.6–49.1 | [71] |
Array of filtered and non-filtered cold-pressed oils | 14.6–53.0 | 594–967 | 19.6–50.3 | [42] |
Commercial cold-pressed oils | 21.02–65.92 | 376.28–906.63 | - | [48] |
Commercial cold-pressed oils | 39.2–47.7 | 774.3–924.5 | 3.2–4.0 | [72] |
Commercial cold-pressed oils subjected to cotton filtration and centrifugation in laboratory | 38.73 | 794.66 | 29.22 | [29] |
Sample | Chlorophylls a + b | Total Carotenes | Total Polyphenols | Reference |
---|---|---|---|---|
Commercial cold-pressed oils | 34.8–76.4 | 2.61–1.78 | - | [19] |
Commercial refined oils | 0.41–2.64 | 0.29–1.73 | 22,100–160,800 | [20] |
Commercial hot/cold-pressed oils | - | 2.37–52.15 | 8.32–200.42 | [68] |
Commercial cold-pressed oils | 33.5–67.8 | - | 162.5 | [26] |
Commercial cold-pressed oils subjected to ultrasound bleaching | 0.4–11.5 | - | 106.0–118.1 | |
Commercial cold-pressed oils | 56.3 | 23.4 | - | [23] |
Commercial cold-pressed oilssubjected to ultrasound bleaching | 7.8–14.8 | 2.3–4.0 | - | |
Array of filtered and non-filtered commercial cold-pressed oils | 0.78–75-7 | 2.53–3.93 | - | [42] |
Commercial cold-pressed oils | - | - | 12.08–186.78 | [29] |
Commercial cold-pressed oils | - | - | 290,320–384,520 | [69] |
Sample | Squalene | Reference |
---|---|---|
Commercial oil | ND | [93] |
Commercial hot/cold-pressed oils | 521.4–30,594.90 | [68] |
Refined commercial oil | 80.52 | [94] |
Commercial oil | 13.9 | [95] |
NF-HO | F-HO | |||
---|---|---|---|---|
T0 | T12 | T0 | T12 | |
Na | 238.95 ± 17.54 a | 233.95 ± 21.91 a | 254.14 ± 6.71 a | 246.83 ± 13.30 a |
Mg | 13.99 ± 3.22 a | 12.45 ± 2.76 a | 12.92 ± 3.71 a | 11.22 ± 1.11 a |
K | 46.40 ± 4.67 a | 48.47 ± 5.25 a | 45.39 ± 6.31 a | 47.80 ± 10.28 a |
Fe | 4.11 ± 2.36 a | 3.17 ± 0.89 a | 5.28 ± 2.54 a | 4.84 ± 1.42 a |
Cu | 0.028 ± 0.026 a | 0.071 ± 0.035 a | 0.047 ± 0.025 a | 0.070 ± 0.019 a |
Mn | 1.17 ± 0.20 a | 1.25 ± 0.19 a | 1.12 ± 0.23 a | 1.43 ± 0.58 a |
Zn | 7.86 ± 3.28 a | 6.49 ± 1.46 a | 7.95 ± 2.42 a | 5.83 ± 1.50 a |
Se | <LOD | <LOD | <LOD | <LOD |
Ni | 0.023 ± 0.009 a | 0.014 ± 0.004 a | 0.016 ± 0.004 a | 0.020 ± 0.009 a |
Cr | 0.008 ± 0.003 a | 0.006 ± 0.002 a | 0.006 ± 0.004 a | 0.007 ± 0.003 a |
Al | 5.74 ± 2.15 a | 5.74 ± 1.28 a | 4.58 ± 2.60 a | 4.94 ± 2.88 a |
Cd | 0.08 ± 0.004 a | 0.011 ± 0.005 a | 0.015 ± 0.004 a | 0.012 ± 0.006 a |
Pb | 0.26 ± 0.08 a | 0.33 ± 0.07 a | 0.41 ± 0.24 a | 0.38 ± 0.14 a |
As | 0.08 ± 0.004 a | 0.009 ± 0.001 a | 0.009 ± 0.003 a | 0.009 ± 0.007 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lo Turco, V.; Litrenta, F.; Nava, V.; Albergamo, A.; Rando, R.; Bartolomeo, G.; Potortì, A.G.; Di Bella, G. Effect of Filtration Process on Oxidative Stability and Minor Compounds of the Cold-Pressed Hempseed Oil during Storage. Antioxidants 2023, 12, 1231. https://doi.org/10.3390/antiox12061231
Lo Turco V, Litrenta F, Nava V, Albergamo A, Rando R, Bartolomeo G, Potortì AG, Di Bella G. Effect of Filtration Process on Oxidative Stability and Minor Compounds of the Cold-Pressed Hempseed Oil during Storage. Antioxidants. 2023; 12(6):1231. https://doi.org/10.3390/antiox12061231
Chicago/Turabian StyleLo Turco, Vincenzo, Federica Litrenta, Vincenzo Nava, Ambrogina Albergamo, Rossana Rando, Giovanni Bartolomeo, Angela Giorgia Potortì, and Giuseppa Di Bella. 2023. "Effect of Filtration Process on Oxidative Stability and Minor Compounds of the Cold-Pressed Hempseed Oil during Storage" Antioxidants 12, no. 6: 1231. https://doi.org/10.3390/antiox12061231
APA StyleLo Turco, V., Litrenta, F., Nava, V., Albergamo, A., Rando, R., Bartolomeo, G., Potortì, A. G., & Di Bella, G. (2023). Effect of Filtration Process on Oxidative Stability and Minor Compounds of the Cold-Pressed Hempseed Oil during Storage. Antioxidants, 12(6), 1231. https://doi.org/10.3390/antiox12061231