The Impact of Alcohol Consumption and Oral Microbiota on Upper Aerodigestive Tract Carcinomas: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants’ Selection and Sampling
2.2. Biochemical and Hematological Analyses
2.3. Ethyl Glucuronide (EtG) Measurement in the Hair
2.4. Carbohydrate-Deficient Transferrin (CDT) Measurements
2.5. Detection of Oral Microorganisms
2.6. FORD (Free Oxygen Radicals Defense) and FORT (Free Oxygen Radicals Test) Analyses
2.7. ADH1B, ADH7, ADH1C, and ALDH2 Gene Polymorphisms
2.8. Statistical Analysis
3. Results
3.1. General Description of the Enrolled Individuals
3.2. Ethyl Glucuronide (EtG) in the Hair
3.3. Carbohydrate-Deficient Transferrin (CDT) Serum Levels
3.4. Cancer Localization Distribution
3.5. Microbiota of the Oral Cavity
3.6. Oxidative Stress Data
3.7. ADH1B, ADH7, ADH1C, and ALDH2 Gene Polymorphisms and Haplotypes
3.8. ADH7 and ALDH2 Expressions in the Available Peritumoral Tissues
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ciafrè, S.; Carito, V.; Ferraguti, G.; Greco, A.; Chaldakov, G.N.; Fiore, M.; Ceccanti, M. How alcohol drinking affects our genes: An epigenetic point of view. Biochem. Cell Biol. 2019, 97, 345–356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogden, G.R. Alcohol and oral cancer. Alcohol 2005, 35, 169–173. [Google Scholar] [CrossRef] [PubMed]
- Speight, P.M.; Khurram, S.A.; Kujan, O. Oral potentially malignant disorders: Risk of progression to malignancy. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2018, 125, 612–627. [Google Scholar] [CrossRef] [Green Version]
- Marziliano, A.; Teckie, S.; Diefenbach, M.A. Alcohol-related head and neck cancer: Summary of the literature. Head Neck 2020, 42, 732–738. [Google Scholar] [CrossRef] [PubMed]
- Seitz, H.K.; Meier, P. The role of acetaldehyde in upper digestive tract cancer in alcoholics. Transl. Res. 2007, 149, 293–297. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, F.D.; Coveñas, R. Biochemical mechanisms associating alcohol use disorders with cancers. Cancers 2021, 13, 3548. [Google Scholar] [CrossRef]
- Rumgay, H.; Murphy, N.; Ferrari, P.; Soerjomataram, I. Alcohol and cancer: Epidemiology and biological mechanisms. Nutrients 2021, 13, 3173. [Google Scholar] [CrossRef]
- Martinez-Castillo, M.; Altamirano-Mendoza, I.; Sánchez-Valle, S.; García-Islas, L.; Sánchez-Barragán, M.; Hernández-Santillán, M.; Hernández-Barragán, A.; Pérez-Hernández, J.L.; Higuera-de la Tijera, F.; Gutierrez-Reyes, G. Immune dysregulation and pathophysiology of alcohol consumption and alcoholic liver disease. Rev. Gastroenterol. Mex. 2023, 88, 136–154. [Google Scholar] [CrossRef]
- Das, S.K.; Vasudevan, D.M. Alcohol-induced oxidative stress. Life Sci. 2007, 81, 177–187. [Google Scholar] [CrossRef]
- Betteridge, D.J. What is oxidative stress? Metabolism. 2000, 49, 3–8. [Google Scholar] [CrossRef]
- Oliveira de Araújo Melo, C.; Cidália Vieira, T.; Duarte Gigonzac, M.A.; Soares Fortes, J.; Moreira Duarte, S.S.; da Cruz, A.D.; Silva, D.D.M.E. Evaluation of polymorphisms in repair and detoxification genes in alcohol drinkers and non-drinkers using capillary electrophoresis. Electrophoresis 2020, 41, 254–258. [Google Scholar] [CrossRef] [PubMed]
- Tsermpini, E.E.; Plemenitaš Ilješ, A.; Dolžan, V. Alcohol-Induced Oxidative Stress and the Role of Antioxidants in Alcohol Use Disorder: A Systematic Review. Antioxidants 2022, 11, 1374. [Google Scholar] [CrossRef]
- Ferraguti, G.; Terracina, S.; Petrella, C.; Greco, A.; Minni, A.; Lucarelli, M.; Agostinelli, E.; Ralli, M.; de Vincentiis, M.; Raponi, G.; et al. Alcohol and Head and Neck Cancer: Updates on the Role of Oxidative Stress, Genetic, Epigenetics, Oral Microbiota, Antioxidants, and Alkylating Agents. Antioxidants 2022, 11, 145. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, N. Oral microbiome metabolism: From “who are they?” to “what are they doing?”. J. Dent. Res. 2015, 94, 1628–1637. [Google Scholar] [CrossRef]
- Salaspuro, V. Pharmacological treatments and strategies for reducing oral and intestinal acetaldehyde. Novartis Found. Symp. 2007, 285, 145–153. [Google Scholar] [CrossRef]
- O’Grady, I.; Anderson, A.; O’Sullivan, J. The interplay of the oral microbiome and alcohol consumption in oral squamous cell carcinomas. Oral Oncol. 2020, 110, 105011. [Google Scholar] [CrossRef] [PubMed]
- Muto, M.; Hitomi, Y.; Ohtsu, A.; Shimada, H.; Kashiwase, Y.; Sasaki, H.; Yoshida, S.; Esumi, H. Acetaldehyde production by non-pathogenic Neisseria in human oral microflora: Implications for carcinogenesis in upper aerodigestive tract. Int. J. Cancer 2000, 88, 342–350. [Google Scholar] [CrossRef] [PubMed]
- Kurkivuori, J.; Salaspuro, V.; Kaihovaara, P.; Kari, K.; Rautemaa, R.; Grönroos, L.; Meurman, J.H.; Salaspuro, M. Acetaldehyde production from ethanol by oral streptococci. Oral Oncol. 2007, 43, 181–186. [Google Scholar] [CrossRef]
- Tagaino, R.; Washio, J.; Abiko, Y.; Tanda, N.; Sasaki, K.; Takahashi, N. Metabolic property of acetaldehyde production from ethanol and glucose by oral Streptococcus and Neisseria. Sci. Rep. 2019, 9, 10446. [Google Scholar] [CrossRef] [Green Version]
- Stasiewicz, M.; Karpiński, T.M. The oral microbiota and its role in carcinogenesis. Semin. Cancer Biol. 2022, 86, 633–642. [Google Scholar] [CrossRef]
- Moritani, K.; Takeshita, T.; Shibata, Y.; Ninomiya, T.; Kiyohara, Y.; Yamashita, Y. Acetaldehyde production by major oral microbes. Oral Dis. 2015, 21, 748–754. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.Y.; Yeh, Y.M.; Yu, H.Y.; Chin, C.Y.; Hsu, C.W.; Liu, H.; Huang, P.J.; Hu, S.N.; Liao, C.T.; Chang, K.P.; et al. Oral microbiota community dynamics associated with oral squamous cell carcinoma staging. Front. Microbiol. 2018, 9, 862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reddy, M.G.S.; Kakodkar, P.; Nayanar, G. Capacity of Candida species to produce acetaldehyde at various concentrations of alcohol. J. Oral Maxillofac. Pathol. 2022, 26, 161–165. [Google Scholar] [CrossRef] [PubMed]
- Gainza-Cirauqui, M.L.; Nieminen, M.T.; Novak Frazer, L.; Aguirre-Urizar, J.M.; Moragues, M.D.; Rautemaa, R. Production of carcinogenic acetaldehyde by Candida albicans from patients with potentially malignant oral mucosal disorders. J. Oral Pathol. Med. 2013, 42, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Nagy, K.N.; Sonkodi, I.; Szöke, I.; Nagy, E.; Newman, H.N. The microflora associated with human oral carcinomas. Oral Oncol. 1998, 34, 304–308. [Google Scholar] [CrossRef]
- Nieminen, M.T.; Uittamo, J.; Salaspuro, M.; Rautemaa, R. Acetaldehyde production from ethanol and glucose by non-Candida albicans yeasts in vitro. Oral Oncol. 2009, 45, e245–e248. [Google Scholar] [CrossRef]
- An, J.; Zhao, J.; Zhang, X.; Ding, R.; Geng, T.; Feng, T.; Jin, T. Impact of multiple alcohol dehydrogenase gene polymorphisms on risk of laryngeal, esophageal, gastric and colorectal cancers in chinese han population. Am. J. Cancer Res. 2015, 5, 2508–2515. [Google Scholar]
- McKay, J.D.; Truong, T.; Gaborieau, V.; Chabrier, A.; Chuang, S.C.; Byrnes, G.; Zaridze, D.; Shangina, O.; Szeszenia-Dabrowska, N.; Lissowska, J.; et al. A genome-wide association study of upper aerodigestive tract cancers conducted within the INHANCE consortium. PLoS Genet. 2011, 7, e1001333. [Google Scholar] [CrossRef]
- Hashibe, M.; McKay, J.D.; Curado, M.P.; Oliveira, J.C.; Koifman, S.; Koifman, R.; Zaridze, D.; Shangina, O.; Wünsch-Filho, V.; Eluf-Neto, J.; et al. Multiple ADH genes are associated with upper aerodigestive cancers. Nat. Genet. 2008, 40, 707–709. [Google Scholar] [CrossRef]
- Chang, T.G.; Yen, T.T.; Wei, C.Y.; Hsiao, T.H.; Chen, I.C. Impacts of ADH1B rs1229984 and ALDH2 rs671 polymorphisms on risks of alcohol-related disorder and cancer. Cancer Med. 2023, 12, 747–759. [Google Scholar] [CrossRef]
- Salaspuro, M. Key role of local acetaldehyde in upper GI tract carcinogenesis. Best Pract. Res. Clin. Gastroenterol. 2017, 31, 491–499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferraguti, G.; Pascale, E.; Lucarelli, M. Alcohol Addiction: A Molecular Biology Perspective. Curr. Med. Chem. 2015, 22, 670–684. [Google Scholar] [CrossRef] [PubMed]
- Harkey, M.R. Anatomy and physiology of hair. Forensic Sci. Int. 1993, 63, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Lande, R.G.; Marin, B. Biomarker characteristics of alcohol use in the u.s. army. J. Addict. Dis. 2009, 28, 158–163. [Google Scholar] [CrossRef] [Green Version]
- Concheiro, M.; Cruz, A.; Mon, M.; De Castro, A.; Quintela, O.; Lorenzo, A.; López-Rivadulla, M. Ethylglucuronide determination in urine and hair from alcohol withdrawal patients. J. Anal. Toxicol. 2009, 33, 155–161. [Google Scholar] [CrossRef] [Green Version]
- Joya, X.; Mazarico, E.; Ramis, J.; Pacifici, R.; Salat-Batlle, J.; Mortali, C.; García-Algar, O.; Pichini, S. Segmental hair analysis to assess effectiveness of single-session motivational intervention to stop ethanol use during pregnancy. Drug Alcohol Depend. 2016, 158, 45–51. [Google Scholar] [CrossRef]
- Gomez-Roig, M.D.; Marchei, E.; Sabra, S.; Busardò, F.P.; Mastrobattista, L.; Pichini, S.; Gratacós, E.; Garcia-Algar, O. Maternal hair testing to disclose self-misreporting in drinking and smoking behavior during pregnancy. Alcohol 2018, 67, 1–6. [Google Scholar] [CrossRef]
- Morini, L.; Politi, L.; Polettini, A. Ethyl glucuronide in hair. A sensitive and specific marker of chronic heavy drinking. Addiction 2009, 104, 915–920. [Google Scholar] [CrossRef]
- Boscolo-Berto, R.; Viel, G.; Montisci, M.; Terranova, C.; Favretto, D.; Ferrara, S.D. Ethyl glucuronide concentration in hair for detecting heavy drinking and/or abstinence: A meta-analysis. Int. J. Legal Med. 2013, 127, 611–619. [Google Scholar] [CrossRef]
- Mattia, A.; Moschella, C.; David, M.C.; Fiore, M.; Gariglio, S.; Salomone, A.; Vincenti, M. Development and Validation of a GC-EI-MS/MS Method for Ethyl Glucuronide Quantification in Human Hair. Front. Chem. 2022, 10, 858205. [Google Scholar] [CrossRef]
- Cooper, G.A.A.; Kronstrand, R.; Kintz, P. Society of Hair Testing guidelines for drug testing in hair. Forensic Sci. Int. 2012, 218, 20–24. [Google Scholar] [CrossRef]
- Tarani, L.; Carito, V.; Ferraguti, G.; Petrella, C.; Greco, A.; Ralli, M.; Messina, M.P.; Rasio, D.; De Luca, E.; Putotto, C.; et al. Neuroinflammatory Markers in the Serum of Prepubertal Children with down Syndrome. J. Immunol. Res. 2020, 2020, 6937154. [Google Scholar] [CrossRef] [PubMed]
- Pavlatou, M.G.; Papastamataki, M.; Apostolakou, F.; Papassotiriou, I.; Tentolouris, N. FORT and FORD: Two simple and rapid assays in the evaluation of oxidative stress in patients with type 2 diabetes mellitus. Metabolism. 2009, 58, 1657–1662. [Google Scholar] [CrossRef] [PubMed]
- Carito, V.; Ceccanti, M.; Cestari, V.; Natella, F.; Bello, C.; Coccurello, R.; Mancinelli, R.; Fiore, M. Olive polyphenol effects in a mouse model of chronic ethanol addiction. Nutrition 2017, 33, 65–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sano, D.; Yabuki, K.; Arai, Y.; Tanabe, T.; Chiba, Y.; Nishimura, G.; Takahashi, H.; Yamanaka, S.; Oridate, N. The applicability of new TNM classification for humanpapilloma virus-related oropharyngeal cancer in the 8th edition of the AJCC/UICC TNM staging system in Japan: A single-centre study. Auris Nasus Larynx 2018, 45, 558–565. [Google Scholar] [CrossRef] [PubMed]
- Glastonbury, C.M. Head and Neck Squamous Cell Cancer: Approach to Staging and Surveillance; Hodler, J., Kubik-Huch, R.A., von Schulthess, G.K., Eds.; Springer: Cham, Switzerland, 2020; pp. 215–222. [Google Scholar] [CrossRef] [Green Version]
- Ferraguti, G.; Merlino, L.; Battagliese, G.; Piccioni, M.G.; Barbaro, G.; Carito, V.; Messina, M.P.; Scalese, B.; Coriale, G.; Fiore, M.; et al. Fetus morphology changes by second-trimester ultrasound in pregnant women drinking alcohol. Addict. Biol. 2020, 25, e12724. [Google Scholar] [CrossRef]
- Preston, K.L.; Jobes, M.L.; Phillips, K.A.; Epstein, D.H. Real-time assessment of alcohol drinking and drug use in opioid-dependent polydrug users. Behav. Pharmacol. 2016, 27, 579–584. [Google Scholar] [CrossRef] [Green Version]
- Go, M.D.; Al-Delaimy, W.K.; Schilling, D.; Vuylsteke, B.; Mehess, S.; Spindel, E.R.; McEvoy, C.T. Hair and nail nicotine levels of mothers and their infants as valid biomarkers of exposure to intrauterine tobacco smoke. Tob. Induc. Dis. 2021, 19, 100. [Google Scholar] [CrossRef]
- Moore, S.R.; Johnson, N.W.; Pierce, A.M.; Wilson, D.F. The epidemiology of tongue cancer: A review of global incidence. Oral Dis. 2000, 6, 75–84. [Google Scholar] [CrossRef]
- Zheng, T.; Holford, T.; Chen, Y.; Jiang, P.; Zhang, B.; Boyle, P. Risk of tongue cancer associated with tobacco smoking and alcohol consumption: A case-control study. Oral Oncol. 1997, 33, 82–85. [Google Scholar] [CrossRef]
- Franceschi, S.; Barra, S.; La Vecchia, C.; Bidoli, E.; Negri, E.; Talamini, R. Risk factors for cancer of the tongue and the mouth. A case-control study from northern Italy. Cancer 1992, 70, 2227–2233. [Google Scholar] [CrossRef] [PubMed]
- Wong, D.T.; Todd, R.; Tsuji, T.; Donoff, R.B. Molecular biology of human oral cancer. Crit. Rev. Oral Biol. Med. 1996, 7, 319–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Fu, D.; Xu, C.; Yang, J.; Wang, Z. Identification of genes associated with tongue cancer in patients with a history of tobacco and/or alcohol use. Oncol. Lett. 2017, 13, 629–638. [Google Scholar] [CrossRef] [Green Version]
- Kummetat, J.L.; Leonhard, A.; Manthey, J.; Speerforck, S.; Schomerus, G. Understanding the Association between Alcohol Stigma and Alcohol Consumption within Europe: A Cross-Sectional Exploratory Study. Eur. Addict. Res. 2022, 28, 446–454. [Google Scholar] [CrossRef] [PubMed]
- Betts, G.; Ratschen, E.; Breton, M.O.; Grainge, M.J. Alcohol consumption and risk of common cancers: Evidence from a cohort of adults from the UK. J. Public Health 2018, 40, 540–548. [Google Scholar] [CrossRef]
- Hsu, W.L.; Chien, Y.C.; Chiang, C.J.; Yang, H.I.; Lou, P.J.; Wang, C.P.; Yu, K.J.; You, S.L.; Wang, L.Y.; Chen, S.Y.; et al. Lifetime risk of distinct upper aerodigestive tract cancers and consumption of alcohol, betel and cigarette. Int. J. Cancer 2014, 135, 1480–1486. [Google Scholar] [CrossRef]
- Mignogna, M.D.; Fedele, S.; Lo Russo, L.; Lo Muzio, L. Lack of public awareness toward alcohol consumption as risk factor for oral and pharyngeal cancers. Prev. Med. 2001, 33, 137–139. [Google Scholar] [CrossRef]
- Ahmed, H.G.; Abboh, E.A.A.; Alnajib, A.M.A.; Elhussein, G.M.O.; Mustafa, S.A.; Abdalla, R.A.H.; Babiker, A.Y.Y.; Mohammed, M.S.A. Shared thoughts and practices on some modifiable cancer risk factors. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 3612–3621. [Google Scholar] [CrossRef]
- Turati, F.; Garavello, W.; Tramacere, I.; Pelucchi, C.; Galeone, C.; Bagnardi, V.; Corrao, G.; Islami, F.; Fedirko, V.; Boffetta, P.; et al. A Meta-analysis of Alcohol Drinking and Oral and Pharyngeal Cancers: Results from Subgroup Analyses. Alcohol Alcohol. 2013, 48, 107–118. [Google Scholar] [CrossRef] [Green Version]
- Piemonte, E.D.; Lazos, J.P.; Brunotto, M. Relationship between chronic trauma of the oral mucosa, oral potentially malignant disorders and oral cancer. J. Oral Pathol. Med. 2010, 39, 513–517. [Google Scholar] [CrossRef]
- Bebek, G.; Bennett, K.L.; Funchain, P.; Campbell, R.; Seth, R.; Scharpf, J.; Burkey, B.; Eng, C. Microbiomic subprofiles and MDR1 promoter methylation in head and neck squamous cell carcinoma. Hum. Mol. Genet. 2012, 21, 1557–1565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, X.; Peters, B.A.; Jacobs, E.J.; Gapstur, S.M.; Purdue, M.P.; Freedman, N.D.; Alekseyenko, A.V.; Wu, J.; Yang, L.; Pei, Z.; et al. Drinking alcohol is associated with variation in the human oral microbiome in a large study of American adults. Microbiome 2018, 6, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mager, D.L.; Haffajee, A.D.; Devlin, P.M.; Norris, C.M.; Posner, M.R.; Goodson, J.M. The salivary microbiota as a diagnostic indicator of oral cancer: A descriptive, non-randomized study of cancer-free and oral squamous cell carcinoma subjects. J. Transl. Med. 2005, 3, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Birley, A.J.; James, M.R.; Dickson, P.A.; Montgomery, G.W.; Heath, A.C.; Whitfield, J.B.; Martin, N.G. Association of the gastric alcohol dehydrogenase gene ADH7 with variation in alcohol metabolism. Hum. Mol. Genet. 2008, 17, 179–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Birley, A.J.; James, M.R.; Dickson, P.A.; Montgomery, G.W.; Heath, A.C.; Martin, N.G.; Whitfield, J.B. ADH single nucleotide polymorphism associations with alcohol metabolism in vivo. Hum. Mol. Genet. 2009, 18, 1533–1542. [Google Scholar] [CrossRef] [Green Version]
- Farinati, F.; Cardin, R.; Zordan, M.; Valiante, F.; Garro, A.J.; Burra, P.; Venier, P.; Nitti, D.; Levis, A.G.; Naccarato, R. Alcohol metabolism in the upper digestive tract: Its implications with respect to carcinogenesis. Eur. J. Cancer Prev. 1992, 1 (Suppl. 3), 25–32. [Google Scholar] [CrossRef]
- Cederbaum, A.I. Alcohol Metabolism. Clin. Liver Dis. 2012, 16, 667–685. [Google Scholar] [CrossRef] [Green Version]
- Arif, R.T.; Mogaddam, M.A.; Merdad, L.A.; Farsi, N.J. Does human papillomavirus modify the risk of oropharyngeal cancer related to smoking and alcohol drinking? A systematic review and meta-analysis. Laryngoscope Investig. Otolaryngol. 2022, 7, 1391–1401. [Google Scholar] [CrossRef]
- Iftikhar, A.; Islam, M.; Shepherd, S.; Jones, S.; Ellis, I. What is behind the lifestyle risk factors for head and neck cancer? Front. Psychol. 2022, 13, 960638. [Google Scholar] [CrossRef]
- Batistella, E.Â.; Gondak, R.; Rivero, E.R.C.; Warnakulasuriya, S.; Guerra, E.; Porporatti, A.L.; De Luca Canto, G. Comparison of tobacco and alcohol consumption in young and older patients with oral squamous cell carcinoma: A systematic review and meta-analysis. Clin. Oral Investig. 2022, 26, 6855–6869. [Google Scholar] [CrossRef]
- Sanger, F.; Nicklen, S.; Coulson, A.R. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 1977, 74, 5463–5467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Patient ID# | Sex | Age (Years) | Cancer Localization | p/cTNM | Declared Smoking (n° Cigarettes Per Day/Years of Smoking) | 9 Months Follow-Up |
---|---|---|---|---|---|---|
1 | M | 60 | Hypopharynx | cT4bN3bM0 | 10/45 | Alive with recurrent local carcinoma |
2 | F | 57 | Hypopharynx | pT4aN0M0 | 40/not declared | Alive, no recurrent local carcinoma |
3 | M | 72 | Larynx | pT4aN0M0 | 20 per day up to 1981 | Alive, no recurrent local carcinoma |
4 | M | 58 | Hypopharynx | pT3N3bM0 | 40/40 | Alive with severe recurrent local carcinoma |
5 | M | 54 | Larynx | pT3N3bM0 | 30/35 | Alive, no recurrent local carcinoma |
6 | M | 63 | Larynx | pT4aN0M0 | 20/48 | Alive, no recurrent local carcinoma |
7 | M | 57 | Tongue | pT3N1M0 | 10/13 | Alive, no recurrent local carcinoma |
8 | M | 49 | Larynx | pT3N0M0 | 50/35 | Alive, no recurrent local carcinoma |
9 | M | 66 | Oropharynx | cT4N2bM0 | 10/10 | Alive with recurrent local carcinoma |
10 | F | 58 | Tongue | pT3N3bM0 | 20/20 | Alive, no recurrent local carcinoma |
11 | M | 59 | Upper Gingiva | cT4bN2cM1 | 40/30 | Deceased |
12 | M | 60 | Tongue | cT4aN2bM0 | 20/40 | Alive with recurrent local carcinoma |
13 | M | 53 | Oropharynx | cT4aN3bM0 | 20/35 | Alive with severe recurrent local carcinoma |
14 | M | 46 | Tongue | pT1N0M0 | 20/30 | Alive, no recurrent local carcinoma |
15 | M | 65 | Larynx | pT3N0M0 | 80 per day up to 60 years | Alive with severe recurrent local carcinoma |
16 | M | 70 | Larynx | pT4aN3bM0 | 20/56 | Deceased |
17 | F | 75 | Larynx | pT3N0M0 | 30/47 | Alive, no recurrent local carcinoma |
18 | M | 56 | Larynx | pT3N0M0 | 40/10 | Alive, no recurrent local carcinoma |
19 | M | 71 | Larynx | pT3N3bM0 | 25 cigarettes up to 2014 | Alive with severe recurrent carcinoma |
20 | F | 60 | Larynx | pT2N0M0 | 20/35 | Alive, no recurrent local carcinoma |
21 | M | 67 | Larynx | pT4aN0M0 | 20/15 | Alive, no recurrent local carcinoma |
* Haplotype | Ctrls (n = 40) N (Frequency) | Tumor (n = 42) N (Frequency) | χ2, df | p | OR | 95% CI |
---|---|---|---|---|---|---|
C G T C G T C C C | 10 (0.25) | 3 (0.068) | 5.295, 1 | 0.0214 * | 4.556 | 1.153 to 18.00 |
C G T T A A C C G | 1 (0.025) | 6 (0.136) | 3.402, 1 | 0.0651 | 0.1624 | 0.01865 to 1.414 |
C G C T A A C C G | 10 (0.25) | 11 (0.25) | 0.0000, 1 | 1.0000 | 1.000 | 0.3719 to 2.689 |
C G C C G T C C C | 9 (0.225) | 17 (0.386) | 2.553, 1 | 0.1101 | 0.4611 | 0.1768 to 1.203 |
C G C C G T G T C | 3 (0.075) | 2 (0.045) | 0.3267, 1 | 0.5676 | 1.703 | 0.2695 to 10.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fiore, M.; Minni, A.; Cavalcanti, L.; Raponi, G.; Puggioni, G.; Mattia, A.; Gariglio, S.; Colizza, A.; Meliante, P.G.; Zoccali, F.; et al. The Impact of Alcohol Consumption and Oral Microbiota on Upper Aerodigestive Tract Carcinomas: A Pilot Study. Antioxidants 2023, 12, 1233. https://doi.org/10.3390/antiox12061233
Fiore M, Minni A, Cavalcanti L, Raponi G, Puggioni G, Mattia A, Gariglio S, Colizza A, Meliante PG, Zoccali F, et al. The Impact of Alcohol Consumption and Oral Microbiota on Upper Aerodigestive Tract Carcinomas: A Pilot Study. Antioxidants. 2023; 12(6):1233. https://doi.org/10.3390/antiox12061233
Chicago/Turabian StyleFiore, Marco, Antonio Minni, Luca Cavalcanti, Giammarco Raponi, Gianluca Puggioni, Alessandro Mattia, Sara Gariglio, Andrea Colizza, Piero Giuseppe Meliante, Federica Zoccali, and et al. 2023. "The Impact of Alcohol Consumption and Oral Microbiota on Upper Aerodigestive Tract Carcinomas: A Pilot Study" Antioxidants 12, no. 6: 1233. https://doi.org/10.3390/antiox12061233
APA StyleFiore, M., Minni, A., Cavalcanti, L., Raponi, G., Puggioni, G., Mattia, A., Gariglio, S., Colizza, A., Meliante, P. G., Zoccali, F., Tarani, L., Barbato, C., Lucarelli, M., Ceci, F. M., Francati, S., Ferraguti, G., Ceccanti, M., & Petrella, C. (2023). The Impact of Alcohol Consumption and Oral Microbiota on Upper Aerodigestive Tract Carcinomas: A Pilot Study. Antioxidants, 12(6), 1233. https://doi.org/10.3390/antiox12061233