Efficacy of Verbally Describing One’s Own Body Movement in Motor Skill Acquisition
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedure
2.3. Dependent Variables and Data Analyses
3. Results
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Mulder, T. Motor imagery and action observation: Cognitive tools for rehabilitation. J. Neural Transm. 2007, 114, 1265–1278. [Google Scholar] [CrossRef] [PubMed]
- Avanzino, L.; Gueugneau, N.; Bisio, A.; Ruggeri, P.; Papaxanthis, C.; Bove, M. Motor cortical plasticity induced by motor learning through mental practice. Front. Behav. Neurosci. 2015, 9, 105. [Google Scholar] [CrossRef] [PubMed]
- Page, S.J.; Levine, P.; Leonard, A.C. Effects of mental practice on affected limb use and function in chronic stroke. Arch. Phys. Med. Rehabil. 2005, 86, 399–402. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.-Y.; Kim, J.-S.; Lee, G.-C. Effects of motor imagery training on balance and gait abilities in post-stroke patients: A randomized controlled trial. Clin. Rehabil. 2012, 27, 675–680. [Google Scholar] [CrossRef]
- Moseley, G.L. Graded motor imagery for pathologic pain: A randomized controlled trial. Neurology 2006, 67, 2129–2134. [Google Scholar] [CrossRef]
- Moseley, G.L. Is successful rehabilitation of complex regional pain syndrome due to sustained attention to the affected limb? A randomised clinical trial. Pain 2005, 114, 54–61. [Google Scholar] [CrossRef]
- Moseley, G.L. Graded motor imagery is effective for long-standing complex regional pain syndrome: A randomised controlled trial. Pain 2004, 108, 192–198. [Google Scholar] [CrossRef]
- Roland, P.E.; Larsen, B.; Lassen, N.A.; Skinhoj, E. Supplementary motor area and other cortical areas in organization of voluntary movements in man. J. Neurophysiol. 1980, 43, 118–136. [Google Scholar] [CrossRef] [PubMed]
- Stephan, K.M.; Fink, G.R.; Passingham, R.E.; Silbersweig, D.; Ceballos-Baumann, A.O.; Frith, C.D.; Frackowiak, R.S. Functional anatomy of the mental representation of upper extremity movements in healthy subjects. J. Neurophysiol. 1995, 73, 373–386. [Google Scholar] [CrossRef]
- Luft, A.R.; Skalej, M.; Stefanou, A.; Klose, U.; Voigt, K. Comparing motion- and imagery-related activation in the human cerebellum: A functional MRI study. Hum. Brain Mapp. 1998, 6, 105–113. [Google Scholar] [CrossRef]
- Porro, C.A.; Francescato, M.P.; Cettolo, V.; Diamond, M.E.; Baraldi, P.; Zuiani, C.; Bazzocchi, M.; di Prampero, P.E. Primary motor and sensory cortex activation during motor performance and motor imagery: A functional magnetic resonance imaging study. J. Neurosci. 1996, 16, 7688–7698. [Google Scholar] [CrossRef] [PubMed]
- Roth, M.; Decety, J.; Raybaudi, M.; Massarelli, R.; Delon-Martin, C.; Segebarth, C.; Morand, S.; Gemignani, A.; Decorps, M.; Jeannerod, M. Possible involvement of primary motor cortex in mentally simulated movement: A functional magnetic resonance imaging study. Neuroreport 1996, 7, 1280–1284. [Google Scholar] [CrossRef] [PubMed]
- Lotze, M.; Montoya, P.; Erb, M.; Hülsmann, E.; Flor, H.; Klose, U.; Birbaumer, N.; Grodd, W. Activation of cortical and cerebellar motor areas during executed and imagined hand movements: An fMRI study. J. Cogn. Neurosci. 1999, 11, 491–501. [Google Scholar] [CrossRef] [PubMed]
- Stinear, C.M.; Byblow, W.D.; Steyvers, M.; Levin, O.; Swinnen, S.P. Kinesthetic, but not visual, motor imagery modulates corticomotor excitability. Exp. Brain Res. 2006, 168, 157–164. [Google Scholar] [CrossRef]
- Mizuguchi, N.; Sakamoto, M.; Muraoka, T.; Kanosue, K. Influence of touching an object on corticospinal excitability during motor imagery. Exp. Brain Res. 2009, 196, 529–535. [Google Scholar] [CrossRef]
- Mizuguchi, N.; Sakamoto, M.; Muraoka, T.; Nakagawa, K.; Kanazawa, S.; Nakata, H.; Moriyama, N.; Kanosue, K. The Modulation of Corticospinal Excitability during Motor Imagery of Actions with Objects. PLoS ONE 2011, 6, e26006. [Google Scholar] [CrossRef]
- Bufalari, I.; Sforza, A.; Cesari, P.; Aglioti, S.M.; Fourkas, A.D. Motor imagery beyond the joint limits: A transcranial magnetic stimulation study. Biol. Psychol. 2010, 85, 283–290. [Google Scholar] [CrossRef]
- Decety, J.; Jeannerod, M. Mentally simulated movements in virtual reality: Does Fitts’s law hold in motor imagery? Behav. Brain Res. 1995, 72, 127–134. [Google Scholar] [CrossRef]
- Bakker, M.; De Lange, F.; Stevens, J.; Toni, I.; Bloem, B. Motor imagery of gait: A quantitative approach. Exp. Brain Res. 2007, 179, 497–504. [Google Scholar] [CrossRef]
- Stout, D.; Chaminade, T. Stone tools, language and the brain in human evolution. Philos. Trans. R. Soc. B Biol. Sci. 2012, 367, 75–87. [Google Scholar] [CrossRef]
- Suwa, M. Meta-Cognition as a Tool for Storytelling and Questioning What Design Is. Bull. Jpn. Soc. Sci. Des. 2009, 16, 21–26. [Google Scholar]
- Suwa, M. A cognitive model of acquiring embodied expertise through meta-cognitive verbalization. Trans. Jpn. Soc. Artif. Intell. 2008, 23, 141–150. [Google Scholar] [CrossRef]
- Duffau, H.; Capelle, L.; Denvil, D.; Gatignol, P.; Sichez, N.; Lopes, M.; Sichez, J.-P.; Van Effenterre, R. The role of dominant premotor cortex in language: A study using intraoperative functional mapping in awake patients. Neuroimage 2003, 20, 1903–1914. [Google Scholar] [CrossRef]
- Morin, A.; Hamper, B. Self-Reflection and the inner voice: Activation of the left inferior frontal gyrus during perceptual and conceptual self-referential thinking. Open Neuroimaging J. 2012, 6, 78–79. [Google Scholar] [CrossRef] [PubMed]
- Rizzolatti, G.; Camarda, R.; Fogassi, L.; Gentilucci, M.; Luppino, G.; Matelli, M. Functional organization of inferior area 6 in the macaque monkey. Exp. Brain Res. 1988, 71, 491–507. [Google Scholar] [CrossRef] [PubMed]
- Oldfield, R.C. The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia 1971, 9, 97–113. [Google Scholar] [CrossRef]
- Rodgers, W.; Hall, C.; Buckolz, E. The effect of an imagery training program on imagery ability, imagery use, and figure skating performance. J. Appl. Sport Psychol. 1991, 3, 109–125. [Google Scholar] [CrossRef]
- Kawasaki, T.; Tozawa, R.; Aramaki, H. Effectiveness of using an unskilled model in action observation combined with motor imagery training for early motor learning in elderly people: A preliminary study. Somatosens. Mot. Res. 2018, 35, 204–211. [Google Scholar] [CrossRef]
- Miller, K.J. Executive functions. Pediatr. Ann. 2005, 34, 310–317. [Google Scholar] [CrossRef]
- Toglia, J.P.; Rodger, S.A.; Polatajko, H.J. Anatomy of cognitive strategies: A therapist’s primer for enabling occupational performance. Can. J. Occup. Ther. 2012, 79, 225–236. [Google Scholar] [CrossRef]
- Personnier, P.; Kubicki, A.; Laroche, D.; Papaxanthis, C. Temporal features of imagined locomotion in normal aging. Neurosci. Lett. 2010, 476, 146–149. [Google Scholar] [CrossRef] [PubMed]
- Butler, A.J.; Cazeaux, J.; Fidler, A.; Jansen, J.; Lefkove, N.; Gregg, M.; Hall, C.; Easley, K.A.; Shenvi, N.; Wolf, S.L. The movement imagery questionnaire-revised, (MIQ-RS) is a reliable and valid tool for evaluating motor imagery in stroke populations. Evid. Based Complement. Altern. Med. 2012, 2012, 497289. [Google Scholar] [CrossRef] [PubMed]
- McInnes, K.; Friesen, C.; Boe, S. Specific brain lesions impair explicit motor imagery ability: A systematic review of the evidence. Arch. Phys. Med. Rehabil. 2016, 97, 478–489. [Google Scholar] [CrossRef]
- Cohen, R.G.; Chao, A.; Nutt, J.G.; Horak, F.B. Freezing of gait is associated with a mismatch between motor imagery and motor execution in narrow doorways, not with failure to judge doorway passability. Neuropsychologia 2011, 49, 3981–3988. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, T.; Mikami, K.; Kamo, T.; Aoki, R.; Ishiguro, R.; Nakamura, H.; Tozawa, R.; Asada, N.; Hiiragi, Y.; Yamada, Y. Motor planning error in Parkinson’s disease and its clinical correlates. PLoS ONE 2018, 13, e0202228. [Google Scholar] [CrossRef] [PubMed]
- Nojima, I.; Oga, T.; Fukuyama, H.; Kawamata, T.; Mima, T. Mirror visual feedback can induce motor learning in patients with callosal disconnection. Exp. Brain Res. 2013, 227, 79–83. [Google Scholar] [CrossRef]
- Nojima, I.; Mima, T.; Koganemaru, S.; Thabit, M.N.; Fukuyama, H.; Kawamata, T. Human motor plasticity induced by mirror visual feedback. J. Neurosci. 2012, 32, 1293–1300. [Google Scholar] [CrossRef] [PubMed]
- Nojima, I.; Koganemaru, S.; Kawamata, T.; Fukuyama, H.; Mima, T. Action observation with kinesthetic illusion can produce human motor plasticity. Eur. J. Neurosci. 2015, 41, 1614–1623. [Google Scholar] [CrossRef]
- Von Rein, E.; Hoff, M.; Kaminski, E.; Sehm, B.; Steele, C.J.; Villringer, A.; Ragert, P. Improving motor performance without training: The effect of combining mirror visual feedback with transcranial direct current stimulation. J. Neurophysiol. 2015, 113, 2383–2389. [Google Scholar] [CrossRef]
- Nakano, H.; Osumi, M.; Ueta, K.; Kodama, T.; Morioka, S. Changes in electroencephalographic activity during observation, preparation, and execution of a motor learning task. Int. J. Neurosci. 2013, 123, 866–875. [Google Scholar] [CrossRef]
- Matsumura, M.; Sadato, N.; Kochiyama, T.; Nakamura, S.; Naito, E.; Matsunami, K.; Kawashima, R.; Fukuda, H.; Yonekura, Y. Role of the cerebellum in implicit motor skill learning: A PET study. Brain Res. Bull. 2004, 63, 471–483. [Google Scholar] [CrossRef] [PubMed]
- Anderson, A. Learning strategies in physical education: Self-talk, imagery, and goal-setting. J. Phys. Educ. Recreat. Dance 1997, 68, 30–35. [Google Scholar] [CrossRef]
- Anderson, A.; Vogel, P.; Albrecht, R. The effect of instructional self-talk on the overhand throw. Phys. Educ. 1999, 56, 215. [Google Scholar]
- Landin, D. The role of verbal cues in skill learning. Quest 1994, 46, 299–313. [Google Scholar] [CrossRef]
Describing Group (N = 18) | Control Group (N = 18) | p-Value | |
---|---|---|---|
Age (years) | 21.1 ± 0.83 | 21.4 ± 0.51 | 0.16 |
Gender distribution (% female) | 33 | 33 | 1.00 |
Distance between wrist to top of middle finger at non-dominant hand (cm) | 19.6 ± 2.8 | 19.3 ± 1.4 | 0.60 |
Edinburgh handedness inventory score | 92.6 ± 6.6 | 89.9 ± 6.5 | 0.23 |
Absolute error of mental chronometry (s) | 2.22 ± 1.23 | 1.37 ± 0.97 | 0.69 |
Baseline | Post 1 | Post 2 | Post 3 | |
---|---|---|---|---|
(a) | ||||
Describing group | 11.46 ± 7.19 | 15.93 ± 9.77 | 18.71 ± 8.98 | 21.01 ± 8.72 |
Control group | 12.67 ± 6.92 | 13.15 ± 6.73 | 15.24 ± 7.54 | 14.71 ± 4.27 |
(b) | ||||
Describing group | 1.11 ± 1.23 | 0.89 ± 1.02 | 0.56 ± 0.70 | 0.44 ± 0.70 |
Control group | 1.06 ± 1.06 | 0.67 ± 0.97 | 0.78 ± 0.94 | 0.78 ± 0.65 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kawasaki, T.; Kono, M.; Tozawa, R. Efficacy of Verbally Describing One’s Own Body Movement in Motor Skill Acquisition. Brain Sci. 2019, 9, 356. https://doi.org/10.3390/brainsci9120356
Kawasaki T, Kono M, Tozawa R. Efficacy of Verbally Describing One’s Own Body Movement in Motor Skill Acquisition. Brain Sciences. 2019; 9(12):356. https://doi.org/10.3390/brainsci9120356
Chicago/Turabian StyleKawasaki, Tsubasa, Masashi Kono, and Ryosuke Tozawa. 2019. "Efficacy of Verbally Describing One’s Own Body Movement in Motor Skill Acquisition" Brain Sciences 9, no. 12: 356. https://doi.org/10.3390/brainsci9120356
APA StyleKawasaki, T., Kono, M., & Tozawa, R. (2019). Efficacy of Verbally Describing One’s Own Body Movement in Motor Skill Acquisition. Brain Sciences, 9(12), 356. https://doi.org/10.3390/brainsci9120356