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Abstract: The present study examined whether (a) verbally describing one’s own body movement
can be potentially effective for acquiring motor skills, and (b) if the effects are related to motor
imagery. The participants in this study were 36 healthy young adults (21.2 ± 0.7 years), randomly
assigned into two groups (describing and control). They performed a ball rotation activity, with the
describing group being asked by the examiner to verbally describe their own ball rotation, while the
control group was asked to read a magazine aloud. The participants’ ball rotation performances were
measured before the intervention, then again immediately after, five minutes after, and one day after.
In addition, participants’ motor imagery ability (mental chronometry) of their upper extremities was
measured. The results showed that the number of successful ball rotations (motor smoothness) and
the number of ball drops (motor error) significantly improved in the describing group. Moreover,
improvement in motor skills had a significant correlation with motor imagery ability. This suggests
that verbally describing an intervention is an effective tool for learning motor skills, and that motor
imagery is a potential mechanism for such verbal descriptions.
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1. Introduction

Acquiring motor skills is commonly achieved through the repeated execution of motor skills.
However, recent research has indicated that the process of learning motor skills can be promoted
through the use of cognitive strategies, without requiring actual physical movement [1,2]. The most
common cognitive strategy used is motor imagery training, which is the mental practice of motor
skills. The effectiveness of this strategy has been shown in research with individuals with a wide range
of physical impairments, such as decreased fine motor skills [3], difficulties with balance and gait
following a stroke [4], and complex regional pain syndrome [5–7]. Thus, clinical evidence for motor
imagery training has been recently established. Motor imagery training has also been regarded as an
effective approach for use in clinical settings, as it can be done without using actual physical movements.

The mechanisms of the beneficial effects of motor imagery training have been researched in the
fields of both physiology and neurology. Particularly, previous research has demonstrated that the
neural networks used during motor imagery are similar to those used during motor skill execution.
These studies showed that when one imagines moving part of his or her body, the areas of the brain
that correspond to that body part are significantly activated, including the primary motor cortex and
dorsal premotor cortex, as well as hand representation located in the caudal cingulate motor area [8–13].
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Additionally, excitability of the corticospinal system, as shown during transcranial magnetic stimulation,
is increased during motor imagery [14–17]. Thus, neuroimaging and neurophysiological studies have
supported the finding that motor imagery and motor execution involve overlapping neural structures
in the central nervous system. Behavioral data have also shown the association between motor imagery
and motor execution. For example, Decety and colleagues reported a high temporal correspondence
between imagining walking and physically walking [18]. Bakker and colleagues, as an extension study
of Decety’s report [18], demonstrated that the time used to imagine walking to a destination increased
with increasing path length or decreasing path width [19]. These findings taken together with the
previously mentioned research from multiple areas of study, show that motor imagery is related to
motor execution. Thus, motor imagery training accesses similar mechanisms within the brain as motor
skill execution, which facilitate motor prediction and simulation of motor performance. Based on the
previous studies, motor imagery training is suggested to have beneficial results.

In the present study, we focused on the learning of body movements through describing aloud
one’s own motor performance to promote the acquisition of motor skills. Verbally describing one’s own
body movements shows overlapping brain activities with motor execution and imagining one’s own
body movements (motor imagery) [20]. Additionally, verbally describing one’s own motor performance
includes motor imagery-related processes (recalling and analyzing one’s own motor skills) through
inner speech and self-reflection [21,22]. The left frontal lobe of the brain, which is activated with inner
speech [23] and self-reflection [24], is involved in providing motor imagery and motor programs [25].
Considering the previous research, we hypothesized that the process of verbally describing one’s own
motor performance is related to motor imagery. In particular, we hypothesized that verbal descriptions
are involved in motor imagery and as a result, motor learning may be promoted.

The aim of the present study was to examine whether verbally describing one’s own motor
performance contributes to motor skill acquisition. To address this goal, the study was designed to
demonstrate the efficacy of describing one’s own motor performance when compared to a control
activity (reading a scientific magazine aloud). The second aim was to determine whether the describing
intervention could be associated with motor imagery. Thus, we investigated the relationship between
the efficacy of the describing intervention and motor imagery ability.

2. Materials and Methods

2.1. Participants

Participants included 36 healthy young adults (mean age = 21.2 years, SD = 0.7 years). All
participants were strongly right-handed, as based on the Edinburgh handedness inventory [26].
Inclusion criteria were that participants had no previous experience with the ball rotation activity
used in the intervention and no previous diagnosis of a neurological disorder. All participants gave
informed consent prior to the study. The experimental protocols were approved by the Institutional
Ethics Committee of Ryotokuji University (approval number 2622), and the tenets of the Declaration of
Helsinki were followed.

2.2. Procedure

A schematic diagram of the procedure is shown in Figure 1. The participants sat comfortably
in chairs, and they were asked to practice rotating two wooden balls clockwise in their left hand for
five minutes. The balls were each 50 mm in diameter, weighed 37 grams, and had a relatively smooth
surface. After practicing this action, the participants’ performance regarding the number of successful
ball rotations and the number of ball drops in one minute was taken as a baseline measurement.
They were instructed to rotate the two balls as quickly as possible during that minute. Next, the
participants were assigned at random to one of two groups, the describing group (n = 18) or the control
group (n = 18), and then informed of the details of the intervention. We ensured that there were no
significant group differences in age, gender distribution, hand length (i.e., the length from the wrist to
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the top of the middle finger), Edinburgh handedness inventory score [26], or motor imagery ability
(Table 1). Participants’ motor imagery abilities were assessed by examining mental chronometry [18]
at a shoulder joint. This was done by measuring the time it took for both first-person perspectives
imagining and executing shoulder flexion from a neutral position (i.e., their arms along the sides of
their body) to 90 degrees, 10 times at free speed.

Figure 1. A schematic diagram of the procedure.

Table 1. Basic characteristics of each group.

Describing Group
(N = 18)

Control Group
(N = 18) p-Value

Age (years) 21.1 ± 0.83 21.4 ± 0.51 0.16
Gender distribution (% female) 33 33 1.00

Distance between wrist to top of middle finger
at non-dominant hand (cm) 19.6 ± 2.8 19.3 ± 1.4 0.60

Edinburgh handedness inventory score 92.6 ± 6.6 89.9 ± 6.5 0.23
Absolute error of mental chronometry (s) 2.22 ± 1.23 1.37 ± 0.97 0.69

For the describing group, the participants were instructed by the examiner to describe aloud,
in two minutes, how to perform the ball rotation task. The instructions were as follows: “Please
verbally describe how to get successful ball rotations,” and, “What were the tips to get successful
ball rotations?” The participants were also instructed to refrain from making any body movements.
During the description, the examiner only provided back-channel feedback. Immediately after (Post 1),
five minutes after (Post 2), and one day after (Post 3) the intervention, the participants’ ball rotation
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performances were measured. For the control group, the same procedure was followed as in the
describing group; however, the participants in the control group read a scientific magazine aloud
instead of participating in the verbally describing intervention, and they were not instructed in terms
of verbally describing their own ball rotations.

In order to measure ball rotation performance, we timed their taped performance with a working
stopwatch next to the participant’s hand. This allowed us to accurately count the number of successful
ball rotations and ball drops by dividing the video into frames using video conversion software (Free
Video to JPG Converter, DVDVideoSoft ltd., London, United Kingdom). The number of successful ball
rotations and ball drops were calculated by dividing each second of the recordings into 30 frames. The
recordings included a stopwatch in every frame.

2.3. Dependent Variables and Data Analyses

The number of successful ball rotations and the number of ball drops were analyzed with two-way
mixed analysis of variance with group (describing group, control group) as between-subject factor
and session (baseline, immediately after, five minutes after, and one day after) as within-subject factor.
A simple main effect test was applied if the interaction effect was significant. Bonferroni multiple
comparison test was applied for post hoc comparison. In the describing group, the relationship between
the improvement number of successful ball rotations in Post 3 (the number of successful ball rotations
in Post 3 subtracted by the number of successful ball rotations in baseline) and the normalized values
of the absolute error times of the mental chronometry (i.e., the relative error value) was investigated
using Spearman’s rank correlation analysis. All the data were analyzed using SPSS 25. The level of
significance was set at p < 0.05.

3. Results

Table 2 and Figure 2 show the results of the participants’ motor performance. For the number
of successful ball rotations, the main effect of the session variable was significant (F (3, 102) = 33.59,
p < 0.001, η2 = 0.50); however, there was no significant main effect of the group variable. A post hoc
analysis of the session showed that the number of successful ball rotations in Post 1, Post 2, and Post
3 were significantly more than that in the baseline (Post 1 vs. baseline: p = 0.02, Post 2 vs. baseline:
p < 0.001, Post 3 vs. baseline: p < 0.001). Additionally, the number of ball rotations in Post 2 and Post 3
were significantly more than that in Post 1 (Post 2 vs. Post 1: p < 0.001, Post 3 vs. Post 1: p < 0.001).
A significant interaction (session × group) was obtained (F (3, 102) = 11.84, p < 0.001, η2 = 0.26). There
were significant simple main effects of session variables in the describing group (F (3, 32) = 43.82, p <

0.001, η2 = 0.80) and the control group (F (3, 32) = 10.68, p < 0.001, η2 = 0.50). See Figure 2a for more
details. In Post 3, the number of successful ball rotations in the describing group was more than in the
control group (F (1, 34) = 7.57, p = 0.009, η2 = 0.18). Moreover, Spearman’s rank correlation analysis
showed a significant relationship between the relative error value of the mental chronometry and the
improvement number of successful ball rotations in Post 3 as shown in Figure 3 (r = −0.66, p = 0.003).

Table 2. (a) Mean number of successful ball rotations (mean ± SD) and (b) mean number of ball drops
(mean ± SD) for each group and session.

Baseline Post 1 Post 2 Post 3

(a)
Describing group 11.46 ± 7.19 15.93 ± 9.77 18.71 ± 8.98 21.01 ± 8.72

Control group 12.67 ± 6.92 13.15 ± 6.73 15.24 ± 7.54 14.71 ± 4.27
(b)

Describing group 1.11 ± 1.23 0.89 ± 1.02 0.56 ± 0.70 0.44 ± 0.70
Control group 1.06 ± 1.06 0.67 ± 0.97 0.78 ± 0.94 0.78 ± 0.65
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Figure 2. (a) Mean number of successful ball rotations in the describing and control groups. (b) Mean
number of ball drops in the describing and control groups. For (a) and (b), the error bars denote the
standard deviation.

Figure 3. Scattergram showing the relationship between the improvement number of successful ball
rotations in Post 3 and the relative error value of the mental chronometry in the describing group (n =

18, Spearman’s rank correlation).

For the number of ball drops, no main effect for the variables of session and group was shown;
however, there was a significant interaction (session × group) (F (3, 102) = 4.08, p = 0.009, η2 = 0.11). In
the post hoc analysis for the describing groups, the number of ball drops in Post 3 was significantly
lower than that in Post 1 (p = 0.02). Additionally, in Post 3, the number of ball drops in the describing
group was significantly lower than in the control group as shown in Figure 2b (p = 0.005).

4. Discussion

The present study examined whether verbally describing own body movement demonstrates
efficacy in motor skill acquisition when compared to reading aloud. The results showed that based
on the number of successful ball rotations for one minute, positive effects were distinctly observed
by the describing intervention. In the number of ball drops, the describing intervention led to a
decrease only one day after the intervention. Rodgers et al. showed that both interventions using
verbalization improved gross motor skill more than what was expected [27]. In the present study, these
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improvements in motor skill performance suggest that the describing intervention showed efficacy in
fine motor skill acquisition.

Improvements of each dependent variable indicate it was a meaningful change. We considered the
number of successful ball rotations to reflect motor smoothness and the number of ball drops to reflect
motor error. The describing intervention could show efficacy for both dependent variables, which is
a trade-off between speed and accuracy. Our previous research examined the effects of intervention
using motor imagery training combined with action observation by using the same paradigm as the
present study [28]. The results of that study showed that the intervention had efficacy for motor
smoothness, but not motor error. This combination intervention was assumed to enhance motor
imagery, which involves the same mechanisms as the describing intervention. Considering the findings
of the previous research, the impact of describing may be advantageous compared to interventions
using motor imagery combined with action observation. However, in this regard, additional research
should be conducted in the future.

A potential mechanism of the describing intervention could be attributed to motor imagery
through recall and inner speech in terms of one’s own body movements. Recall and inner speech
regarding one’s own ball rotation performance is required prior to verbally describing the experienced
movement. Recalling one’s own body movement could directly enhance motor imagery. In addition,
inner speech could help to analyze and clarify the described contents. Several previous studies have
indicated that inner speech contributes to guiding behavior through the use of rules, procedures,
and action steps [29,30]. Suwa reported that imagining and analyzing one’s own performance could
be considered meta-cognitive verbalization, which can enhance motor skill acquisition [21,22]. The
findings of the present study regarding the relationship between the relative error value of the mental
chronometry and the improvement number of successful ball rotations supports the involvement of
motor imagery in the efficacy of the describing intervention.

Our study had some strengths. First, usability of the describing intervention is higher than a
conventional approach for some individuals. The describing intervention does not require strenuous
physical activity, meaning it can be used with individuals who are not able to participate in high-intensity
exercise therapy in clinical or sports settings such as frail older people or patients who have lower
extremity orthopedic or cardiorespiratory problems in clinical and sports settings. Second, the
describing intervention could have an advantage over other cognitive strategies. It has been pointed
that certain populations (e.g., older people [31] or patients with brain injuries [32,33] or Parkinson’s
disease [34,35]) have difficulty correctly imagining their own body movements. As opposed to
interventions using motor imagery, the describing intervention is more accessible to these populations
because the intervention has a distinct method. The impact of the describing intervention on motor
skill acquisition may be higher than that of previously explored cognitive strategies such as action
observation interventions.

Several limitations of our study should also be considered. First, we only investigated participants’
motor performance up to one day after the describing intervention. To determine essential motor
skills acquisition, we should verify the effects for a longer period post-intervention, considering that
motor learning is an internal process leading to relatively permanent changes. Second, it is possible
that the effects of the describing intervention are related to task specificity. The ball rotation task
has been frequently used in previous studies on motor learning [36–41]. However, the ball rotation
task only tests finger movement coordination. Therefore, it is still unclear whether the describing
intervention would still be effective when used with other kinds of motor skills (e.g., adaptive gait,
finger tapping sequence learning task, or learning to throw objects). Therefore, further research into
this issue is needed. Third, it is unclear whether the beneficial effects of describing differ depending on
the level of expertise (novice vs. elite athletes). In this regard, more research should be conducted in
the future. Finally, the process of describing body movement includes monitoring of the listener’s
responses (including non-verbal presentation) and inferring mental and cognitive conditions. This
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process is likely related to theory of mind. Future research should investigate the different effects of
verbal interventions such as self-instruction [42–44], which are not related to theory of mind.

In conclusion, the present study determined the beneficial effects of verbally describing one’s
own body movement in motor skill acquisition. Additionally, the motor imagery would be related to
the mechanism of the beneficial effects of the describing intervention. The describing intervention is
expected to be applied in clinical and sports fields as an intervention that does not require strenuous
physical activity.
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