Analysis of Early EEG Changes After Tocilizumab Treatment in New-Onset Refractory Status Epilepticus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Subjects
2.2. EEG Data Acquisition and Preprocessing
2.3. EEG Feature Extraction
2.4. Clustering of Temporal PSD Profiles and Visualization
2.5. Functional Connectivity Analysis
2.6. Visual Analysis of EEG for Improvement
2.7. Statistical Analysis
3. Results
3.1. Clinical Characteristics of the Subjects
3.2. Change of Quantitative EEG Features After Treatment
3.3. Temporal Trajectories of Clusters of Subject–Channel Pairs After Treatment
3.4. Connectivity Changes over Time After Tocilizumab Treatment
3.5. Qualitative EEG Changes and Correlation with Quantitative Measures
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SE | Status Epilepticus |
RSE | Refractory Status Epilepticus |
ASM | Antiseizure Medication |
NORSE | New-Onset Refractory Status Epilepticus |
LGI1 | Leucine-Rich Glioma-Inactivated 1 |
CNS | Central Nervous System |
IL-6 | Interleukin-6 |
EEG | Electroencephalography |
PSD | Power Spectral Density |
ICU | Intensive Care Unit |
wPLI | Weighted Phase Lag Index |
PRP | Periodic Rhythmic Pattern |
EA | Epileptiform Activity |
PD | Periodic Discharge |
DistEn | Distribution Entropy |
TNF-α | Tumor Necrosis Factor-Alpha |
IL-1β | Interleukin-1 Beta |
CRS-R | Coma Recovery Scale—Revised |
GCS | Glasgow Coma Scale |
CSF | Cerebrospinal Fluid |
MRI | Magnetic Resonance Imaging |
HSI | High Signal Intensity |
fPHT | Fosphenytoin |
LCM | Lacosamide |
LEV | Levetiracetam |
PB | Phenobarbital |
TPM | Topiramate |
VPA | Valproic Acid |
PGB | Pregabalin |
OXC | Oxcarbazepine |
PER | Perampanel |
mPd | Methylprednisolone |
IVIg | Intravenous Immunoglobulin |
RTX | Rituximab |
mRS | Modified Rankin Scale |
SEM | Standard Error of the Mean |
References
- Trinka, E.; Cock, H.; Hesdorffer, D.; Rossetti, A.O.; Scheffer, I.E.; Shinnar, S.; Shorvon, S.; Lowenstein, D.H. A Definition and Classification of Status Epilepticus—Report of the ILAE Task Force on Classification of Status Epilepticus. Epilepsia 2015, 56, 1515–1523. [Google Scholar] [CrossRef] [PubMed]
- Delaj, L.; Novy, J.; Ryvlin, P.; Marchi, N.A.; Rossetti, A.O. Refractory and Super-Refractory Status Epilepticus in Adults: A 9-Year Cohort Study. Acta Neurol. Scand. 2017, 135, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Mayer, S.A.; Claassen, J.; Lokin, J.; Mendelsohn, F.; Dennis, L.J.; Fitzsimmons, B.-F. Refractory Status Epilepticus: Frequency, Risk Factors, and Impact on Outcome. Arch. Neurol. 2002, 59, 205–210. [Google Scholar] [CrossRef]
- Hirsch, L.J.; Gaspard, N.; van Baalen, A.; Nabbout, R.; Demeret, S.; Loddenkemper, T.; Navarro, V.; Specchio, N.; Lagae, L.; Rossetti, A.O.; et al. Proposed Consensus Definitions for New-Onset Refractory Status Epilepticus (NORSE), Febrile Infection-Related Epilepsy Syndrome (FIRES), and Related Conditions. Epilepsia 2018, 59, 739–744. [Google Scholar] [CrossRef]
- Wickstrom, R.; Taraschenko, O.; Dilena, R.; Payne, E.T.; Specchio, N.; Nabbout, R.; Koh, S.; Gaspard, N.; Hirsch, L.J.; Auvin, S.; et al. International Consensus Recommendations for Management of New Onset Refractory Status Epilepticus Including Febrile Infection-Related Epilepsy Syndrome: Statements and Supporting Evidence. Epilepsia 2022, 63, 2840–2864. [Google Scholar] [CrossRef]
- Gaspard, N.; Foreman, B.P.; Alvarez, V.; Cabrera, K.C.; Probasco, J.C.; Jongeling, A.C.; Meyers, E.; Espinera, A.; Haas, K.F.; Schmitt, S.E.; et al. New-Onset Refractory Status Epilepticus: Etiology, clinical features, and outcome. Neurology 2015, 85, 1604–1613. [Google Scholar] [CrossRef] [PubMed]
- Husari, K.S.; Labiner, K.; Huang, R.; Said, R.R. New-Onset Refractory Status Epilepticus in Children: Etiologies, Treatments, and Outcomes. Pediatr. Crit. Care Med. 2020, 21, 59–66. [Google Scholar] [CrossRef]
- Quek, A.M.L.; Britton, J.W.; McKeon, A.; So, E.; Lennon, V.A.; Shin, C.; Klein, C.; Watson, R.E.; Kotsenas, A.L.; Lagerlund, T.D.; et al. Autoimmune Epilepsy: Clinical Characteristics and Response to Immunotherapy. Arch. Neurol. 2012, 69, 582–593. [Google Scholar] [CrossRef]
- Thompson, J.; Bi, M.; Murchison, A.G.; Makuch, M.; Bien, C.G.; Chu, K.; Farooque, P.; Gelfand, J.M.; Geschwind, M.D.; Hirsch, L.J.; et al. The Importance of Early Immunotherapy in Patients with Faciobrachial Dystonic Seizures. Brain 2018, 141, 348–356. [Google Scholar] [CrossRef]
- Xue, B.; Li, J.; Xie, D.; Weng, Y.; Zhang, X.; Li, X.; Xia, J.; Lin, J. Effects of Early Intervention in Neuromyelitis Optica Spectrum Disorder Patients with Seropositive AQP4 Antibodies. Front. Immunol. 2024, 15, 1458556. [Google Scholar] [CrossRef]
- Titulaer, M.J.; McCracken, L.; Gabilondo, I.; Armangué, T.; Glaser, C.; Iizuka, T.; Honig, L.S.; Benseler, S.M.; Kawachi, I.; Martinez-Hernandez, E.; et al. Treatment and Prognostic Factors for Long-Term Outcome in Patients with Anti-NMDA Receptor Encephalitis: An Observational Cohort Study. Lancet Neurol. 2013, 12, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Nosadini, M.; Mohammad, S.S.; Ramanathan, S.; Brilot, F.; Dale, R.C. Immune Therapy in Autoimmune Encephalitis: A Systematic Review. Expert Rev. Neurother. 2015, 15, 1391–1419. [Google Scholar] [CrossRef]
- Harding, K.; Williams, O.; Willis, M.; Hrastelj, J.; Rimmer, A.; Joseph, F.; Tomassini, V.; Wardle, M.; Pickersgill, T.; Robertson, N.; et al. Clinical Outcomes of Escalation vs Early Intensive Disease-Modifying Therapy in Patients with Multiple Sclerosis. JAMA Neurol. 2019, 76, 536–541. [Google Scholar] [CrossRef] [PubMed]
- Flanagan, E.P.; Geschwind, M.D.; Lopez-Chiriboga, A.S.; Blackburn, K.M.; Turaga, S.; Binks, S.; Zitser, J.; Gelfand, J.M.; Day, G.S.; Dunham, S.R.; et al. Autoimmune Encephalitis Misdiagnosis in Adults. JAMA Neurol. 2023, 80, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Dalmau, J.; Graus, F. Diagnostic Criteria for Autoimmune Encephalitis: Utility and Pitfalls for Antibody-Negative Disease. Lancet Neurol. 2023, 22, 529–540. [Google Scholar] [CrossRef]
- Vezzani, A.; Di Sapia, R.; Kebede, V.; Balosso, S.; Ravizza, T. Neuroimmunology of Status Epilepticus. Epilepsy Behav. 2023, 140, 109095. [Google Scholar] [CrossRef]
- Ravizza, T.; Scheper, M.; Di Sapia, R.; Gorter, J.; Aronica, E.; Vezzani, A. mTOR and Neuroinflammation in Epilepsy: Implications for Disease Progression and Treatment. Nat. Rev. Neurosci. 2024, 25, 334–350. [Google Scholar] [CrossRef]
- Iizuka, T.; Kanazawa, N.; Kaneko, J.; Tominaga, N.; Nonoda, Y.; Hara, A.; Onozawa, Y.; Asari, H.; Hata, T.; Kaneko, J.; et al. Cryptogenic NORSE. Neurol. Neuroimmunol. Neuroinflamm. 2017, 4, e396. [Google Scholar] [CrossRef]
- Shin, Y.-W.; Lee, S.-T.; Park, K.-I.; Jung, K.-H.; Jung, K.-Y.; Lee, S.K.; Chu, K. Treatment Strategies for Autoimmune Encephalitis. Ther. Adv. Neurol. Disord. 2017, 11. [Google Scholar] [CrossRef] [PubMed]
- Berger, B.; Hauck, S.; Runge, K.; Tebartz van Elst, L.; Rauer, S.; Endres, D. Therapy Response in Seronegative versus Seropositive Autoimmune Encephalitis. Front. Immunol. 2023, 14, 1196110. [Google Scholar] [CrossRef]
- Lee, W.-J.; Lee, H.-S.; Kim, D.-Y.; Lee, H.-S.; Moon, J.; Park, K.-I.; Lee, S.K.; Chu, K.; Lee, S.-T. Seronegative Autoimmune Encephalitis: Clinical Characteristics and Factors Associated with Outcomes. Brain 2022, 145, 3509–3521. [Google Scholar] [CrossRef] [PubMed]
- Sebba, A. Tocilizumab: The First Interleukin-6-Receptor Inhibitor. Am. J. Health-Syst. Pharm. 2008, 65, 1413–1418. [Google Scholar] [CrossRef]
- Jun, J.-S.; Lee, S.-T.; Kim, R.; Chu, K.; Lee, S.K. Tocilizumab Treatment for New Onset Refractory Status Epilepticus. Ann. Neurol. 2018, 84, 940–945. [Google Scholar] [CrossRef]
- Donnelly, J.P.; Kasatwar, N.; Hafeez, S.; Seifi, A.; Gilbert, A.; Barthol, C.; Small, C.; Ákos Szabó, C. Resolution of Cryptogenic New Onset Refractory Status Epilepticus with Tocilizumab. Epilepsy Behav. Rep. 2021, 15, 100431. [Google Scholar] [CrossRef]
- Wadayama, T.; Shimizu, M.; Yata, T.; Ishikura, T.; Kajiyama, Y.; Hirozawa, D.; Okuno, T.; Mochizuki, H. Cryptogenic New-Onset Refractory Status Epilepticus Responded to Anti-Interleukin-6 Treatment. J. Neuroimmunol. 2022, 363, 577789. [Google Scholar] [CrossRef] [PubMed]
- Kwack, D.W.; Kim, D.W. The Increased Interleukin-6 Levels Can Be an Early Diagnostic Marker for New-Onset Refractory Status Epilepticus. J. Epilepsy Res. 2022, 12, 78–81. [Google Scholar] [CrossRef] [PubMed]
- Hanin, A.; Cespedes, J.; Dorgham, K.; Pulluru, Y.; Gopaul, M.; Gorochov, G.; Hafler, D.A.; Navarro, V.; Gaspard, N.; Hirsch, L.J. Cytokines in New-Onset Refractory Status Epilepticus Predict Outcomes. Ann. Neurol. 2023, 94, 75–90. [Google Scholar] [CrossRef]
- Hanin, A.; Muscal, E.; Hirsch, L.J. Second-Line Immunotherapy in New Onset Refractory Status Epilepticus. Epilepsia 2024, 65, 1203–1223. [Google Scholar] [CrossRef]
- Lee, W.-J.; Lee, S.-T.; Moon, J.; Sunwoo, J.-S.; Byun, J.-I.; Lim, J.-A.; Kim, T.-J.; Shin, Y.-W.; Lee, K.-J.; Jun, J.-S.; et al. Tocilizumab in Autoimmune Encephalitis Refractory to Rituximab: An Institutional Cohort Study. Neurotherapeutics 2016, 13, 824–832. [Google Scholar] [CrossRef]
- Fitzgerald, J.C.; Weiss, S.L.; Maude, S.L.; Barrett, D.M.; Lacey, S.F.; Melenhorst, J.J.; Shaw, P.; Berg, R.A.; June, C.H.; Porter, D.L.; et al. Cytokine Release Syndrome After Chimeric Antigen Receptor T Cell Therapy for Acute Lymphoblastic Leukemia. Crit. Care Med. 2017, 45, e124–e131. [Google Scholar] [CrossRef]
- Li, H.; Liu, X.; Wang, R.; Lu, A.; Ma, Z.; Wu, S.; Lu, H.; Du, Y.; Deng, K.; Wang, L.; et al. Blood-Brain Barrier Damage and New Onset Refractory Status Epilepticus: An Exploratory Study Using Dynamic Contrast-Enhanced Magnetic Resonance Imaging. Epilepsia 2023, 64, 1594–1604. [Google Scholar] [CrossRef] [PubMed]
- Speake, C.; Habib, T.; Lambert, K.; Hundhausen, C.; Lord, S.; Dufort, M.J.; Skinner, S.O.; Hu, A.; Kinsman, M.; Jones, B.E.; et al. IL-6–Targeted Therapies to Block the Cytokine or Its Receptor Drive Distinct Alterations in T Cell Function. JCI Insight 2022, 7, e159436. [Google Scholar] [CrossRef] [PubMed]
- Bigdely-Shamlo, N.; Mullen, T.; Kothe, C.; Su, K.-M.; Robbins, K.A. The PREP Pipeline: Standardized Preprocessing for Large-Scale EEG Analysis. Front. Neuroinform. 2015, 9, 120. [Google Scholar] [CrossRef]
- Li, X.; Ouyang, G.; Richards, D.A. Predictability Analysis of Absence Seizures with Permutation Entropy. Epilepsy Res. 2007, 77, 70–74. [Google Scholar] [CrossRef] [PubMed]
- Ra, J.S.; Li, T.; Li, Y. A Novel Permutation Entropy-Based EEG Channel Selection for Improving Epileptic Seizure Prediction. Sensors 2021, 21, 7972. [Google Scholar] [CrossRef]
- Olofsen, E.; Sleigh, J.W.; Dahan, A. Permutation Entropy of the Electroencephalogram: A Measure of Anaesthetic Drug Effect. Br. J. Anaesth. 2008, 101, 810–821. [Google Scholar] [CrossRef]
- Amiri, M.; Fisher, P.M.; Raimondo, F.; Sidaros, A.; Cacic Hribljan, M.; Othman, M.H.; Zibrandtsen, I.; Albrechtsen, S.S.; Bergdal, O.; Hansen, A.E.; et al. Multimodal Prediction of Residual Consciousness in the Intensive Care Unit: The CONNECT-ME Study. Brain 2022, 146, 50–64. [Google Scholar] [CrossRef]
- Inouye, T.; Shinosaki, K.; Sakamoto, H.; Toi, S.; Ukai, S.; Iyama, A.; Katsuda, Y.; Hirano, M. Quantification of EEG Irregularity by Use of the Entropy of the Power Spectrum. Electroencephalogr. Clin. Neurophysiol. 1991, 79, 204–210. [Google Scholar] [CrossRef]
- Srinivasan, R.; Winter, W.R.; Ding, J.; Nunez, P.L. EEG and MEG Coherence: Measures of Functional Connectivity at Distinct Spatial Scales of Neocortical Dynamics. J. Neurosci. Methods 2007, 166, 41–52. [Google Scholar] [CrossRef]
- Vinck, M.; Oostenveld, R.; van Wingerden, M.; Battaglia, F.; Pennartz, C.M.A. An Improved Index of Phase-Synchronization for Electrophysiological Data in the Presence of Volume-Conduction, Noise and Sample-Size Bias. NeuroImage 2011, 55, 1548–1565. [Google Scholar] [CrossRef]
- Kenward, M.G.; Roger, J.H. Small Sample Inference for Fixed Effects from Restricted Maximum Likelihood. Biometrics 1997, 53, 983–997. [Google Scholar] [CrossRef] [PubMed]
- Ravizza, T.; Gagliardi, B.; Noé, F.; Boer, K.; Aronica, E.; Vezzani, A. Innate and Adaptive Immunity During Epileptogenesis and Spontaneous Seizures: Evidence from Experimental Models and Human Temporal Lobe Epilepsy. Neurobiol. Dis. 2008, 29, 142–160. [Google Scholar] [CrossRef]
- Vezzani, A.; French, J.; Bartfai, T.; Baram, T.Z. The Role of Inflammation in Epilepsy. Nat. Rev. Neurol. 2011, 7, 31–40. [Google Scholar] [CrossRef]
- Guillemaud, M.; Chavez, M.; Kobeissy, F.; Vezzani, A.; Jimenez, A.D.; Basha, M.M.; Batra, A.; Demeret, S.; Eka, O.; Eschbach, K.; et al. Identification of Distinct Biological Groups of Patients with Cryptogenic NORSE via Inflammatory Profiling. Neurol. Neuroimmunol. Neuroinflamm. 2025, 12, e200403. [Google Scholar] [CrossRef]
- Samland, H.; Huitron-Resendiz, S.; Masliah, E.; Criado, J.; Henriksen, S.J.; Campbell, I.L. Profound Increase in Sensitivity to Glutamatergic- but Not Cholinergic Agonist-Induced Seizures in Transgenic Mice with Astrocyte Production of IL-6. J. Neurosci. Res. 2003, 73, 176–187. [Google Scholar] [CrossRef] [PubMed]
- Kalueff, A.V.; Lehtimaki, K.A.; Ylinen, A.; Honkaniemi, J.; Peltola, J. Intranasal Administration of Human IL-6 Increases the Severity of Chemically Induced Seizures in Rats. Neurosci. Lett. 2004, 365, 106–110. [Google Scholar] [CrossRef] [PubMed]
- Haider, H.A.; Esteller, R.; Hahn, C.D.; Westover, M.B.; Halford, J.J.; Lee, J.W.; Shafi, M.M.; Gaspard, N.; Herman, S.T.; Gerard, E.E.; et al. Sensitivity of Quantitative EEG for Seizure Identification in the Intensive Care Unit. Neurology 2016, 87, 935–944. [Google Scholar] [CrossRef]
- Alkhachroum, A.; Ganesan, S.L.; Koren, J.P.; Kromm, J.; Massad, N.; Reyes, R.A.; Miller, M.R.; Roh, D.; Agarwal, S.; Park, S.; et al. Quantitative EEG-Based Seizure Estimation in Super-Refractory Status Epilepticus. Neurocritical Care 2022, 36, 897–904. [Google Scholar] [CrossRef]
- Chen, J.; Zhou, X.; Jin, L.; Lu, Q.; Sun, H.; Liu, Q.; Huang, Y. Can Spectral Power Be Used as a Candidate Seizure Marker of the Periodic Discharges Pattern? Front. Neurol. 2021, 12, 642669. [Google Scholar] [CrossRef]
- Brazier, M.A. Spread of Seizure Discharges in Epilepsy: Anatomical and Electrophysiological Considerations. Exp. Neurol. 1972, 36, 263–272. [Google Scholar] [CrossRef]
- Song, J.; Tucker, D.M.; Gilbert, T.; Hou, J.; Mattson, C.; Luu, P.; Holmes, M.D. Methods for Examining Electrophysiological Coherence in Epileptic Networks. Front. Neurol. 2013, 4, 55. [Google Scholar] [CrossRef] [PubMed]
- Mao, L.; Zheng, G.; Cai, Y.; Luo, W.; Zhang, Q.; Peng, W.; Ding, J.; Wang, X. Frontotemporal Phase Lag Index Correlates with Seizure Severity in Patients with Temporal Lobe Epilepsy. Front. Neurol. 2022, 13, 855842. [Google Scholar] [CrossRef]
- Englot, D.J.; Hinkley, L.B.; Kort, N.S.; Imber, B.S.; Mizuiri, D.; Honma, S.M.; Findlay, A.M.; Garrett, C.; Cheung, P.L.; Mantle, M.; et al. Global and Regional Functional Connectivity Maps of Neural Oscillations in Focal Epilepsy. Brain 2015, 138, 2249–2262. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.; Shin, Y.; Sunwoo, J.-S.; Son, H.; Lee, S.-B.; Chu, K.; Jung, K.-Y.; Lee, S.K.; Kim, Y.-G.; Park, K.-I. Increased Coherence Predicts Medical Refractoriness in Patients with Temporal Lobe Epilepsy on Monotherapy. Sci. Rep. 2024, 14, 20530. [Google Scholar] [CrossRef]
- Tibdewal, M.N.; Dey, H.R.; Manjunatha, M.; Ray, A.K.; Malokar, M. Multiple Entropies Performance Measure for Detection and Localization of Multi-Channel Epileptic EEG. Biomed. Signal Process. Control 2017, 38, 158–167. [Google Scholar] [CrossRef]
- Li, P.; Yan, C.; Karmakar, C.; Liu, C. Distribution Entropy Analysis of Epileptic EEG Signals. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 4170–4173. [Google Scholar] [CrossRef]
- Dastgoshadeh, M.; Rabiei, Z. Detection of Epileptic Seizures Through EEG Signals Using Entropy Features and Ensemble Learning. Front. Hum. Neurosci. 2023, 16, 1084061. [Google Scholar] [CrossRef] [PubMed]
- Singhsikarwar, S.; Rana, A.K.; Sengar, S.S. Entropy-Driven Deep Learning Framework for Epilepsy Detection Using Electro Encephalogram Signals. Neuroscience 2025, 577, 12–24. [Google Scholar] [CrossRef]
- Kim, H.J.; Lee, S.-A.; Kim, H.-W.; Kim, S.J.; Jeon, S.-B.; Koo, Y.S. The Timelines of MRI Findings Related to Outcomes in Adult Patients with New-Onset Refractory Status Epilepticus. Epilepsia 2020, 61, 1735–1748. [Google Scholar] [CrossRef]
- Fingelkurts, A.A.; Fingelkurts, A.A. Quantitative Electroencephalogram (qEEG) as a Natural and Non-Invasive Window into Living Brain and Mind in the Functional Continuum of Healthy and Pathological Conditions. Appl. Sci. 2022, 12, 9560. [Google Scholar] [CrossRef]
- Frauscher, B.; von Ellenrieder, N.; Zelmann, R.; Doležalová, I.; Minotti, L.; Olivier, A.; Hall, J.; Hoffmann, D.; Nguyen, D.K.; Kahane, P.; et al. Atlas of the Normal Intracranial Electroencephalogram: Neurophysiological Awake Activity in Different Cortical Areas. Brain J. Neurol. 2018, 141, 1130–1144. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.E.; Scholly, J.; Triebkorn, P.; Sip, V.; Medina Villalon, S.; Woodman, M.M.; Le Troter, A.; Guye, M.; Bartolomei, F.; Jirsa, V. VEP Atlas: An Anatomic and Functional Human Brain Atlas Dedicated to Epilepsy Patients. J. Neurosci. Methods 2021, 348, 108983. [Google Scholar] [CrossRef] [PubMed]
- Gillinder, L.; Papacostas, J.; McCombe, P.; Chauvel, P. Effect of Immunotherapy on Intracranial EEG in Patients with Seronegative Autoimmune-Associated Epilepsy. Epileptic Disord. 2022, 24, 1081–1086. [Google Scholar] [CrossRef]
Subject 1 | Subject 2 | Subject 3 | Subject 4 | Subject 5 | Subject 6 | |
---|---|---|---|---|---|---|
Age of onset (years) | 24 | 61 | 62 | 47 | 36 | 17 |
Sex | F | F | M | M | M | F |
Etiology | Cryptogenic | Cryptogenic | Cryptogenic | Cryptogenic | Cryptogenic | Cryptogenic |
Recent history of infections/vaccination | Influenza infection | (-) | Influenza vaccination | (-) | (-) | (-) |
Prodromal symptom | Fever | Fever | Fever, myalgia | Behavioral change, fever | Headache, chills | Fever |
Pre-existing neurological/autoimmune disorders | (-) | (-) | (-) | (-) | (-) | (-) |
Other comorbidities | (-) | (-) | (-) | Chronic hepatitis B, chronic alcoholism | (-) | (-) |
CSF profiles | ||||||
CSF protein level (mg/dL) | 52 | 58 | 124 | 13 | 258 | 83.3 |
CSF leukocyte level (cells/μL) | 1 | 4 | 2 | 63 | 272 | 9 |
Brain MRI findings | T2 HSI at the bilateral cerebral hemisphere | T2 HSI at the bilateral hippocampi and left frontal lobe | T2 HSI at the bilateral hippocampi | Not remarkable | Diffuse leptomeningeal enhancement | Not remarkable |
Treatment | ||||||
Time from SE onset to immunotherapy (days) | 2 | 3 | 1 | 2 | 8 | 2 |
Time from SE onset to tocilizumab administration (days) | 48 | 35 | 13 | 6 | 16 | 17 |
Dose of tocilizumab | 4 mg/kg | 4 mg/kg | 4 mg/kg | 4 mg/kg | 6 mg/kg | 4 mg/kg |
Immunotherapeutic agents used before tocilizumab treatment | mPd, IVIg, RTX | mPd, IVIg, RTX | mPd, IVIg, RTX | mPd, IVIg, RTX | mPd, IVIg | mPd, IVIg, RTX |
Concurrent ASMs on tocilizumab treatment | fPHT, LCM, LEV, PB, TPM, VPA | fPHT, LCM, LEV, PB, PGB, TPM | fPHT, LCM, OXC, PER, PGB, VPA | fPHT, LEV, PB, PER, TPM | fPHT, LEV, PB, PER, PGB, TPM | CLB, LEV, PB, PER, PGB, TPM |
Outcome measures | ||||||
Length of intensive care unit stay (days) | 72 | 18 | 5 | 12 | 18 | 8 |
Length of hospital stay (days) | 442 | 143 | 50 | 78 | 118 | 128 |
Clinical outcome at discharge | 5 | 5 | 5 | 3 | 4 | 5 |
mRS at 6 months | 5 | 5 | 4 | 3 | 4 | 5 |
mRS at 1 year or last follow-up | 5 | 5 | 4 (10 months) | 2 | 1 | 5 (8 months) |
Subject 1 | Subject 2 | Subject 3 | Subject 4 | Subject 5 | Subject 6 | |
---|---|---|---|---|---|---|
Baseline | - | - | - | - | - | - |
1 h | S (S/S) | I (I/I) | S (S/S) | S (S/S) | S (S/S) | I (I/I) |
2 h | I (I/I) | I (I/I) | S (S/S) | I (I/I) | S (S/S) | W (W/W) |
3 h | S (I/S) | S (S/I) | S (I/S) | I (I/I) | S (S/S) | I (I/I) |
4 h | I (I/S) | S (S/S) | I (I/S) | S (S/W) | S (S/S) | S (S/W) |
12 h | I (I/S) | I (I/I) | I (I/I) | I (I/I) | S (S/S) | S (S/S) |
1 d | I (I/I) | S (S/S) | W (W/W) | W (W/W) | S (S/S) | I (I/I) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, Y.-W.; Hong, S.B.; Lee, S.K. Analysis of Early EEG Changes After Tocilizumab Treatment in New-Onset Refractory Status Epilepticus. Brain Sci. 2025, 15, 638. https://doi.org/10.3390/brainsci15060638
Shin Y-W, Hong SB, Lee SK. Analysis of Early EEG Changes After Tocilizumab Treatment in New-Onset Refractory Status Epilepticus. Brain Sciences. 2025; 15(6):638. https://doi.org/10.3390/brainsci15060638
Chicago/Turabian StyleShin, Yong-Won, Sang Bin Hong, and Sang Kun Lee. 2025. "Analysis of Early EEG Changes After Tocilizumab Treatment in New-Onset Refractory Status Epilepticus" Brain Sciences 15, no. 6: 638. https://doi.org/10.3390/brainsci15060638
APA StyleShin, Y.-W., Hong, S. B., & Lee, S. K. (2025). Analysis of Early EEG Changes After Tocilizumab Treatment in New-Onset Refractory Status Epilepticus. Brain Sciences, 15(6), 638. https://doi.org/10.3390/brainsci15060638