Superficial Neuromodulation in Dysautonomia in Women with Post-COVID-19 Condition: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bouza, E.; Cantón-Moreno, R.; De Lucas-Ramos, P.; García-Botella, A.; García-Lledó, A.; Gómez-Pavón, J.; González-Del Castillo, J.; Hernández-Sampelayo, T.; Martín-Delgado, M.C.; Martín-Sánchez, F.J.; et al. Síndrome post-COVID: Un documento de reflexión y opinión. Rev. Esp. Quimioter. 2021, 34, 269–279. [Google Scholar] [CrossRef] [PubMed]
- Emergency Use ICD Codes for COVID-19 Disease Outbreak. Available online: https://www.who.int/standards/classifications/classification-of-diseases/emergency-use-icd-codes-for-covid-19-disease-outbreak (accessed on 29 March 2021).
- SEMG. Guía Clínica para la Atención al Paciente Long COVID/COVID Persistente. Available online: https://www.semg.es/index.php/consensos-guias-y-protocolos/363-guia-clinica-para-la-atencion-al-paciente-long-covid-covid-persistente (accessed on 14 June 2021).
- Ministerio de Sanidad. Gobierno de España. Available online: https://www.sanidad.gob.es/ (accessed on 21 April 2021).
- Carod-Artal, F.J. Complicaciones neurológicas por coronavirus y COVID-19. Rev. Neurol. 2020, 70, 311–322. [Google Scholar] [CrossRef] [PubMed]
- Llorente, B.C.; López, A.M.C.; Sánchez, R.H.; Gutiérrez, C.H. Protocolo diagnóstico de las manifestaciones crónicas de la COVID-19 [Diagnostic protocol for chronic manifestations of COVID-19]. Medicine 2022, 13, 3256–3260. [Google Scholar] [CrossRef] [PubMed]
- Shah, D.P.; Thaweethai, T.; Karlson, E.W.; Bonilla, H.; Horne, B.D.; Mullington, J.M.; Wisnivesky, J.P.; Hornig, M.; Shinnick, D.J.; Klein, J.D.; et al. Sex Differences in Long COVID. JAMA Netw. Open 2025, 8, e2455430. [Google Scholar] [CrossRef]
- Honigsbaum, M.; Krishnan, L. Taking pandemic sequelae seriously: From the Russian influenza to COVID-19 long-haulers. Lancet 2020, 396, 1389–1391. [Google Scholar] [CrossRef]
- Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Qusti, S.; Alshammari, E.M.; Gyebi, G.A.; Batiha, G.E. COVID-19-Induced Dysautonomia: A Menace of Sympathetic Storm. ASN Neuro 2021, 13, 17590914211057635. [Google Scholar] [CrossRef]
- Kaliyaperumal, D.; Rk, K.; Alagesan, M.; Ramalingam, S. Characterization of cardiac autonomic function in COVID-19 using heart rate variability: A hospital based preliminary observational study. J. Basic Clin. Physiol. Pharmacol. 2021, 32, 247–253. [Google Scholar] [CrossRef]
- Barizien, N.; Guen, M.; Russel, S.; Touche, P.; Huang, F.; Vallée, A. Clinical characterization of dysautonomia in long COVID-19 patients. Sci. Rep. 2021, 11, 14042. [Google Scholar] [CrossRef]
- Quinn, K.L.; Lam, G.Y.; Walsh, J.F.; Bhéreur, A.; Brown, A.D.; Chow, C.W.; Chung, K.Y.C.; Cowan, J.; Crampton, N.; Décary, S.; et al. Cardiovascular Considerations in the Management of People with Suspected Long COVID. Can. J. Cardiol. 2023, 39, 741–753. [Google Scholar] [CrossRef]
- Haischer, M.H.; Opielinski, L.E.; Mirkes, L.M.; Uhrich, T.D.; Bollaert, R.E.; Danduran, M.; Bement, M.H.; Piacentine, L.B.; Papanek, P.E.; Hunter, S.K. Heart rate variability is reduced in COVID-19 survivors and associated with physical activity and fatigue. Physiol. Rep. 2024, 12, e15912. [Google Scholar] [CrossRef]
- Cano-de-la-Cuerda, R.; Jiménez-Antona, C.; Melián-Ortiz, A.; Molero-Sánchez, A.; Gil-de Miguel, Á.; Lizcano-Álvarez, Á.; Hernández-Barrera, V.; Varillas-Delgado, D.; Laguarta-Val, S. Construct Validity and Test-Retest Reliability of a Free Mobile Application to Evaluate Aerobic Capacity and Endurance in Post-COVID-19 Syndrome Patients-A Pilot Study. J. Clin. Med. 2022, 24, 131. [Google Scholar] [CrossRef] [PubMed]
- Lizcano-Álvarez, Á.; Varillas-Delgado, D.; Cano-de-la-Cuerda, R.; Jiménez-Antona, C.; Melián-Ortiz, A.; Molero-Sánchez, A.; Laguarta-Val, S. The Association of Genetic Markers Involved in Muscle Performance Responding to Lactate Levels during Physical Exercise Therapy by Nordic Walking in Patients with Long COVID Syndrome: A Nonrandomized Controlled Pilot Study. Int. J. Mol. Sci. 2024, 25, 8305. [Google Scholar] [CrossRef]
- Laguarta-Val, S.; Varillas-Delgado, D.; Lizcano-Álvarez, Á.; Molero-Sánchez, A.; Melian-Ortiz, A.; Cano-de-la-Cuerda, R.; Jiménez-Antona, C. Effects of Aerobic Exercise Therapy through Nordic Walking Program in Lactate Concentrations, Fatigue and Quality-of-Life in Patients with Long-COVID Syndrome: A Non-Randomized Parallel Controlled Trial. J. Clin. Med. 2024, 13, 1035. [Google Scholar] [CrossRef] [PubMed]
- Kinser, A.M.; Sands, W.A.; Stone, M.H. Reliability and validity of a pressure algometer. J. Strength Cond. Res. 2009, 23, 312–314. [Google Scholar] [CrossRef] [PubMed]
- Torres-González, N.; Álvarez-Acosta, L.; Iriarte-Plasencia, A.; Barreto-Cáceres, V.; Valdivia-Miranda, D.; Hernández-Afonso, J.S. Control electrocardiográfico del intervalo QT mediante dispositivo portátil en pacientes ingresados por COVID-19. Propuesta de protocolo [Electrocardiographic/QT interval monitoring with a portable device in hospitalized patients with COVID-19: A protocol proposal]. Rev. Esp. Cardiol. 2020, 73, 771–773. [Google Scholar] [CrossRef]
- Kos, D.; Kerckhofs, E.; Carrea, I.; Verza, R.; Ramos, M.; Jansa, J. Evaluation of the Modified Fatigue Impact Scale in four different European countries. Mult. Scler. 2005, 11, 76–80. [Google Scholar] [CrossRef]
- Beck, S.L.; Schwartz, A.L.; Towsley, G.; Dudley, W.; Barsevick, A. Psychometric evaluation of the Pittsburgh Sleep Quality Index in cancer patients. J. Pain Symptom Manag. 2004, 27, 140–148. [Google Scholar] [CrossRef]
- Vilagut, G.; Ferrer, M.; Rajmil, L.; Rebollo, P.; Permanyer-Miralda, G.; Quintana, J.M.; Santed, R.; Valderas, J.M.; Ribera, A.; Domingo-Salvany, A.; et al. El Cuestionario de Salud SF-36 español: Una década de experiencia y nuevos desarrollos [The Spanish version of the Short Form 36 Health Survey: A decade of experience and new developments]. Gac. Sanit. 2005, 19, 135–150. [Google Scholar] [CrossRef]
- Arnanz, I.; Martínez-del-Valle, M.; Recio, S.; Blasco, R.; Benedito, T.; Sanz, M. Las escalas en la COVID-19 persistente. Med. Gen. Fam. 2021, 10, 79–84. [Google Scholar] [CrossRef]
- Chen, Y.M.; Cintrón, N.M.; Whitson, P.A. Long-term storage of salivary cortisol samples at room temperature. Clin. Chem. 1992, 38, 304. [Google Scholar] [CrossRef]
- Recuperación Exitosa de un Síndrome Regional Complejo a Través de la Electroterapia de Neuromodulación del Sistema Nervioso Autónomo. Available online: http://hdl.handle.net/10553/114084 (accessed on 19 October 2023).
- Tratamiento de la Neuralgia del Trigémino con Neuromodulación no Invasiva NESA: A Propósito de un Caso. Available online: http://hdl.handle.net/10553/115498 (accessed on 19 October 2023).
- Álamo, D.; Lledot-Amat, M.; Medina-Ramírez, R.I. Effects of non-invasive neuromodulation nesa® for the treatment of cerebral stroke sequelae. A case report. In Proceedings of the 17th ISPRM World Congress—ISPRM 2023, Cartagena, Colombia, 4–8 June 2023. [Google Scholar] [CrossRef]
- Caso Clínico de Neuromodulación Superficial Aplicada (NESA) en Pacientes con Esclerosis Múltiple. Available online: http://hdl.handle.net/10553/133551 (accessed on 19 October 2023).
- Teruel-Hernández, E.; López-Pina, J.A.; Souto-Camba, S.; Báez-Suárez, A.; Medina-Ramírez, R.; Gómez-Conesa, A. Improving Sleep Quality, Daytime Sleepiness, and Cognitive Function in Patients with Dementia by Therapeutic Exercise and NESA Neuromodulation: A Multicenter Clinical Trial. Int. J. Environ. Res. Public Health 2023, 20, 7027. [Google Scholar] [CrossRef] [PubMed]
- Soares, F.H.C.; Kubota, G.T.; Fernandes, A.M.; Hojo, B.; Couras, C.; Costa, B.V.; Lapa, J.D.D.S.; Braga, L.M.; Almeida, M.M.; Cunha, P.H.M.D.; et al. Prevalence and characteristics of new-onset pain in COVID-19 survivours, a controlled study. Eur. J. Pain 2021, 25, 1342–1354. [Google Scholar] [CrossRef] [PubMed]
- Fernández-de-Las-Peñas, C.; de-la-Llave-Rincón, A.I.; Ortega-Santiago, R.; Ambite-Quesada, S.; Gómez-Mayordomo, V.; Cuadrado, M.L.; Arias-Navalón, J.A.; Hernández-Barrera, V.; Martín-Guerrero, J.D.; Pellicer-Valero, O.J.; et al. Prevalence and risk factors of musculoskeletal pain symptoms as long-term post-COVID sequelae in hospitalized COVID-19 survivors: A multicenter study. Pain 2022, 163, e989–e996. [Google Scholar] [CrossRef] [PubMed]
- Cascella, M.; Del-Gaudio, A.; Vittori, A.; Bimonte, S.; Del-Prete, P.; Forte, C.A.; Cuomo, A.; De-Blasio, E. COVID-Pain: Acute and Late-Onset Painful Clinical Manifestations in COVID-19—Molecular Mechanisms and Research Perspectives. J. Pain Res. 2021, 14, 2403–2412. [Google Scholar] [CrossRef]
- Shanthanna, H.; Nelson, A.M.; Kissoon, N.; Narouze, S. The COVID-19 pandemic and its consequences for chronic pain: A narrative review. Anaesthesia 2022, 77, 1039–1050. [Google Scholar] [CrossRef]
- Plaut, S. “Long COVID-19” and viral “fibromyalgia-ness”: Suggesting a mechanistic role for fascial myofibroblasts (Nineveh, the shadow is in the fascia). Front. Med. 2023, 10, 952278. [Google Scholar] [CrossRef]
- Clauw, D.J.; Calabrese, L. Rheumatology and Long COVID: Lessons from the study of fibromyalgia. Ann. Rheum. Dis. 2024, 83, 136–138. [Google Scholar] [CrossRef]
- da-Silva, A.L.G.; Vieira, L.d.P.; Dias, L.S.; Prestes, C.V.; Back, G.D.; da Luz Goulart, C.; Arena, R.; Borghi-Silva, A.; Trimer, R. Impact of long COVID on the heart rate variability at rest and during deep breathing maneuver. Sci. Rep. 2023, 13, 22695. [Google Scholar] [CrossRef]
- Hernández, S.; Uribe, E.; Alfaro, J.M.; Campuzano, G.; Salazar, L.M. Cortisol. Mediciones de laboratorio y aplicación clínica. Med. Lab. 2016, 22, 147–163. [Google Scholar] [CrossRef]
- Raff, H. Utility of salivary cortisol measurements in Cushing’s syndrome and adrenal insufficiency. J. Clin. Endocrinol. Metab. 2009, 94, 3647–3655. [Google Scholar] [CrossRef]
- Bozovic, D.; Racic, M.; Ivkovic, N. Salivary cortisol levels as a biological marker of stress reaction. Med. Arch. 2013, 67, 374–377. [Google Scholar] [CrossRef] [PubMed]
- Weitzman, E.D.; Fukushima, D.; Nogeire, C.; Roffwarg, H.; Gallagher, T.F.; Hellman, L. Twenty-four hour pattern of the episodic secretion of cortisol in normal subjects. J. Clin. Endocrinol. Metab. 1971, 33, 14–22. [Google Scholar] [CrossRef]
- Carroll, T.; Raff, H.; Findling, J.W. Late-night salivary cortisol measurement in the diagnosis of Cushing’s syndrome. Nat. Clin. Pract. Endocrinol. Metab. 2008, 4, 344–350. [Google Scholar] [CrossRef] [PubMed]
- Buysse, D.J.; Reynolds, C.F.; Monk, T.H.; Berman, S.R.; Kupfer, D.J. The Pittsburgh Sleep Quality Index: A new instrument for psychiatric practice and research. Psychiatry Res. 1989, 28, 193–213. [Google Scholar] [CrossRef]
- Iqbal, F.M.; Lam, K.; Sounderajah, V.; Clarke, J.M.; Ashrafian, H.; Darzi, A. Characteristics and predictors of acute and chronic post-COVID syndrome: A systematic review and meta-analysis. eClinicalMedicine 2021, 36, 100899. [Google Scholar] [CrossRef]
- Ostrowska, M.; Rzepka-Cholasińska, A.; Pietrzykowski, Ł.; Michalski, P.; Kosobucka-Ozdoba, A.; Jasiewicz, M.; Kasprzak, M.; Kryś, J.; Kubica, A. Effects of Multidisciplinary Rehabilitation Program in Patients with Long COVID-19: Post-COVID-19 Rehabilitation (PCR SIRIO 8) Study. J. Clin. Med. 2023, 12, 420. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, N.; Yamatoku, M.; Tsuchida, T.; Sato, H.; Yamaguchi, K. Effect of Repetitive Transcranial Magnetic Stimulation on Long Coronavirus Disease 2019 with Fatigue and Cognitive Dysfunction. Prog. Rehabil. Med. 2023, 8, 20230004. [Google Scholar] [CrossRef]
- Richardson, J.T.E. Eta squared and partial eta squared as measures of effect size in educational research. Educ. Res. Rev. 2011, 6, 135–147. [Google Scholar] [CrossRef]
EG | CG | p-Value | |
---|---|---|---|
Age | 46.67 (10) | 45.43 (8.10) | 0.503 |
Body weight (kg) | 61.71 (4.71) | 61.94 (3.39) | 0.612 |
EG | CG | Time Effects | Time Effects per Group | Inter Groups | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
T0 | T1 | T2 | T0 | T1 | T2 | F; p-Value | η2 | F; p-Value | η2 | F; p-Value | |
Cortisol (nmol/L) | 6.73 (3.98) 0.24 µg/dL | 12.07 (6.89) 0.43 µg/dL | 10.10 (5.31) 0.36 µg/dL | 7.27 (3.63) 0.26 µg/dL | 3.84 (3.29) 0.13 µg/dL | 15.14 (11.76) 0.54 µg/dL | 4.561; p = 0.019 | 0.246 | 5.751; p = 0.008 | 0.291 | 0.155; p = 0.699 |
PPT C5–C6 (kg) | 1.43 (0.54) | 1.56 (0.68) | 1.87 (0.78) | 1.52 (0.88) | 1.74 (1.74) | 1.92 (1.76) | 3.902; p = 0.032 | 0.218 | 0.88; p = 0.916 | 0.006 | 0.040; p = 0.844 |
PPT D5–D6 (kg) | 1.84 (0.84) | 2.04 (0.97) | 2.27 (0.91) | 2.18 (1.71) | 2.02 (1.66) | 2.37 (2.59) | 1.980; p = 0.157 | 0.124 | 0.555; p = 0.580 | 0.038 | 0.037; p = 0.851 |
PPT tibial (kg) | 2.05 (1.04) | 2.33 (1.25) | 3.34 (1.26) | 2.30 (0.98) | 1.67 (1.02) | 2.13 (1.56) | 6.692; p = 0.04 | 0.323 | 6.186; p = 0.006 | 0.306 | 0.344; p = 0.064 |
SDNN (ms) | 49.06 (29.31) | 149.52 (139.25) | 69.68 (58.33) | 84.65 (65.81) | 185.78 (161.57) | 42.26 (23.43) | 5.561; p = 0.005 | 0.319 | 0.579; p = 0.567 | 0.049 | 0.302; p = 0.021 |
rMSSD (ms) | 48.91 (40.64) | 188.32 (196.00) | 75.15 (80.69) | 113.01 (106.69) | 243.62 (226.61) | 71.00 (68.45) | 6.334; p = 0.005 | 0.213 | 0.389; p = 0.682 | 0.027 | 0.719; p = 0.411 |
HR (bpm) | 80.56 (9.20) | 89.56 (20.70) | 82.22 (10.69) | 71.57 (11.25) | 78.86 (37.98) | 77.29 (10.93) | 0.796; p = 0.461 | 0.054 | 0.105; p = 0.901 | 0.007 | 1.871; p = 0.193 |
PSQI | 12.44 (5.92) | 12.00 (4.69) | 9.22 (6.04) | 11.14 (2.67) | 8.14 (2.48) | 8.14 (3.29) | 9.044; p ≤ 0.001 | 0.392 | 2.218; p = 0.128 | 0.137 | 0.926; p = 0.352 |
MFIS | 60.67 (18.36) | 55.11 (21.06) | 51.78 (22.94) | 62.71 (9.41) | 54.57 (13.74) | 51.99 (16.39) | 7.526; p = 0.002 | 0.350 | 0.168; p = 0.846 | 0.012 | 0.001; p = 0.978 |
EG | CG | Time Effects | Time Effects per Group | Inter Groups | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
SF-36 | T0 | T1 | T2 | T0 | T1 | T2 | F; p-Value | η2 | F; p-Value | η22 | F; p-Value |
Physical function | 41.22 (24.05) | 45.00 (25.62) | 50.49 (28.89) | 62.86 (24.64) | 65.71 (21.10) | 63.75 (20.06) | 0.840; p = 0.442 | 0.057 | 0.0664; p = 0.523 | 0.045 | 2.608; p = 0.129 |
Physical role | 0.00 (0.00) | 25.00 (37.50) | 25.00 (35.36) | 17.85 (37.40) | 17.86 (37.40) | 9.76 (19.01) | 1.445; p = 0.253 | 0.094 | 2.642; p = 0.089 | 0.159 | 0.014; 0.909 |
Body pain | 22.44 (11.76) | 38.44 (23.56) | 36.00 (21.82) | 28.57 (20.59) | 43.14 (23.92) | 50.48 (20.67) | 6.630; p = 0.004 | 0.321 | 0.501; p = 0.611 | 0.035 | 1.001; p = 0.334 |
General health | 26.11 (12.18) | 23.89 (11.67) | 28.78 (12.23) | 34.29 (12.67) | 33.57 (12.20) | 33.19 (14.23) | 0.753; p = 0.480 | 0.051 | 1.053; p = 0.362 | 0.070 | 1.335; p = 0.267 |
Vitality | 25.00 (19.84) | 29.44 (24.55) | 31.67 (10.16) | 15.00 (14.43) | 32.85 (14.10) | 24.81 (14.65) | 4.156; p = 0.026 | 0.229 | 1.528; p = 0.234 | 0.098 | 0.291; p = 0.598 |
Social function | 34.72 (32.24) | 44.44 (33.14) | 47.22 (39.41) | 42.86 (26.86) | 42.86 (35.25) | 51.67 (39.81) | 1.039; p = 0.367 | 0.069 | 0.220; p = 0.804 | 0.015 | 0.057; p = 0.814 |
Emotional role | 63.00 (48.43) | 51.86 (44.49) | 48.15 (47.46) | 62.00 (44.85) | 57.16 (41.78) | 60.00 (40.55) | 0.386; p = 0.684 | 0.027 | 0.177; p = 0.839 | 0.012 | 0.081; p = 0.780 |
Mental health | 51.11 (19.98) | 50.67 (29.25) | 52.88 (24.25) | 59.43 (10.18) | 64.57 (17.26) | 63.35 (19.44) | 0.300; p = 0.743 | 0.021 | 0.257; p = 0.775 | 0.018 | 1.222; p = 0.288 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melián-Ortíz, A.; Zurdo-Sayalero, E.; Perpiñá-Martínez, S.; Delgado-Lacosta, A.; Jiménez-Antona, C.; Fernández-Carnero, J.; Laguarta-Val, S. Superficial Neuromodulation in Dysautonomia in Women with Post-COVID-19 Condition: A Pilot Study. Brain Sci. 2025, 15, 510. https://doi.org/10.3390/brainsci15050510
Melián-Ortíz A, Zurdo-Sayalero E, Perpiñá-Martínez S, Delgado-Lacosta A, Jiménez-Antona C, Fernández-Carnero J, Laguarta-Val S. Superficial Neuromodulation in Dysautonomia in Women with Post-COVID-19 Condition: A Pilot Study. Brain Sciences. 2025; 15(5):510. https://doi.org/10.3390/brainsci15050510
Chicago/Turabian StyleMelián-Ortíz, Alberto, Eduardo Zurdo-Sayalero, Sara Perpiñá-Martínez, Antonio Delgado-Lacosta, Carmen Jiménez-Antona, Josué Fernández-Carnero, and Sofía Laguarta-Val. 2025. "Superficial Neuromodulation in Dysautonomia in Women with Post-COVID-19 Condition: A Pilot Study" Brain Sciences 15, no. 5: 510. https://doi.org/10.3390/brainsci15050510
APA StyleMelián-Ortíz, A., Zurdo-Sayalero, E., Perpiñá-Martínez, S., Delgado-Lacosta, A., Jiménez-Antona, C., Fernández-Carnero, J., & Laguarta-Val, S. (2025). Superficial Neuromodulation in Dysautonomia in Women with Post-COVID-19 Condition: A Pilot Study. Brain Sciences, 15(5), 510. https://doi.org/10.3390/brainsci15050510