Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (13,398)

Search Parameters:
Keywords = nervous system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4088 KB  
Case Report
Candida albicans Meningoencephalitis After Vestibular Schwannoma Surgery: An Autopsy-Confirmed Case Report
by Jessika Camatti, Matteo Tudini, Maria Paola Bonasoni, Anna Laura Santunione, Rossana Cecchi, Erjon Radheshi and Edoardo Carretto
Diagnostics 2026, 16(2), 228; https://doi.org/10.3390/diagnostics16020228 (registering DOI) - 11 Jan 2026
Abstract
Background and Clinical Significance: Cerebral candidiasis (Candida albicans meningoencephalitis) is a rare but severe central nervous system (CNS) infection, usually associated with neurosurgical procedures or indwelling devices. Diagnosis is challenging due to frequent negativity of cerebrospinal fluid (CSF) cultures, and mortality remains [...] Read more.
Background and Clinical Significance: Cerebral candidiasis (Candida albicans meningoencephalitis) is a rare but severe central nervous system (CNS) infection, usually associated with neurosurgical procedures or indwelling devices. Diagnosis is challenging due to frequent negativity of cerebrospinal fluid (CSF) cultures, and mortality remains high despite antifungal therapy. Case Presentation: We describe a 64-year-old woman who underwent retrosigmoid resection of a left vestibular schwannoma. The early postoperative course was complicated by fever, neurological deterioration, and hydrocephalus requiring external CSF drainage. Multiple lumbar punctures revealed inflammatory CSF profiles but persistently negative cultures. One month post-surgery, intraoperative samples from mastoid repair material grew Candida albicans, prompting antifungal therapy. Despite treatment, the patient experienced fluctuating neurological status and required multiple external ventricular drains. Three months after surgery, she clinically deteriorated and died. Autopsy showed diffuse meningeal thickening and purulent exudates at the brain base and posterior fossa. Histopathology confirmed chronic lympho-histiocytic meningitis with necrotizing foci containing Candida albicans. Conclusions: This case underscores the diagnostic and therapeutic challenges of post-neurosurgical Candida CNS infections. Repeatedly negative CSF cultures delayed diagnosis, emphasizing the value of ancillary tests such as β-d-glucan and molecular assays. Even with antifungal therapy, prognosis is poor. Autopsy remains essential for uncovering fatal healthcare-associated fungal infections and informing clinical vigilance and medico-legal assessment. Full article
(This article belongs to the Special Issue Diagnostic Methods in Forensic Pathology, Third Edition)
Show Figures

Figure 1

17 pages, 4818 KB  
Article
Impact of PKC-MAPK Signaling on Cardiac Sympathetic Overactivation in Type-2 Diabetes Mellitus
by Jaswinder Singh, Afia Saabea Owusu Konadu, Yu Li, Boris Shabaltiy and Yu-Long Li
Int. J. Mol. Sci. 2026, 27(2), 723; https://doi.org/10.3390/ijms27020723 (registering DOI) - 10 Jan 2026
Abstract
Type-2 Diabetes Mellitus (T2DM) is related to cardiac arrhythmias. The stellate ganglion (SG), part of the sympathetic nervous system, regulates heart function. Within the SG, satellite glial cells (SGCs) have gap junction channels (Cx43). Increased Cx43 permeability induces SGC depolarization and activates the [...] Read more.
Type-2 Diabetes Mellitus (T2DM) is related to cardiac arrhythmias. The stellate ganglion (SG), part of the sympathetic nervous system, regulates heart function. Within the SG, satellite glial cells (SGCs) have gap junction channels (Cx43). Increased Cx43 permeability induces SGC depolarization and activates the PKC-MAPK14-ADAM17 signaling pathway, releasing some endogenous factors that stimulate nearby cardiac postganglionic sympathetic neurons (CPSN). This study investigated the activation of the PKC-MAPK14-ADAM17 signaling pathway in T2DM SGs and SGCs as a novel mechanism of sympathetic overactivation. A total of 56 Sprague-Dawley rats were randomly assigned to sham and T2DM groups, and T2DM was induced using a high-fat diet combined with low-dose streptozotocin. Real-time RT-PCR, Western blot, and ELISA quantified mRNA/protein expression and enzymatic activity. The patch clamp technique assessed neuronal voltage-gated Ca2+ currents and action potentials, while electrophysiological recording measured cardiac sympathetic nerve activity (CSNA). T2DM rats exhibited marked upregulation of MAPK14, PKC-α, and ADAM17 mRNA/protein in the SG, alongside elevated enzymatic activities of PKC and ADAM17. T2DM also increased Ca2+ currents and neuronal excitability in the CPSN and induced the elevation of the CSNA. Upregulated PKC-MAPK-ADAM17 signaling in the SG might contribute to cardiac sympathetic overactivation in T2DM rats by enhancing the cell excitability of the CPSN. Full article
Show Figures

Figure 1

29 pages, 7062 KB  
Review
Advances in Clostridial Neurotoxins: Passage of the Intestinal Barrier and Targeting of Specific Neuronal Cells
by Michel R. Popoff
Toxins 2026, 18(1), 35; https://doi.org/10.3390/toxins18010035 (registering DOI) - 10 Jan 2026
Abstract
Clostridial neurotoxins, botulinum neurotoxins (BoNTs), and tetanus neurotoxin (TeNT) are potent toxins responsible for severe diseases, botulism and tetanus, respectively. BoNTs associate with non-toxic proteins (non-toxic non-hemagglutinin, hemagglutinins, and OrfXs), which protect BoNTs against acidic pH and protease degradation and facilitate BoNT passage [...] Read more.
Clostridial neurotoxins, botulinum neurotoxins (BoNTs), and tetanus neurotoxin (TeNT) are potent toxins responsible for severe diseases, botulism and tetanus, respectively. BoNTs associate with non-toxic proteins (non-toxic non-hemagglutinin, hemagglutinins, and OrfXs), which protect BoNTs against acidic pH and protease degradation and facilitate BoNT passage through the intestinal barrier. TeNT enters motor neurons and undergoes a retrograde axonal transport until the target inhibitory interneurons in the central nervous system. BoNTs and TeNT recognize specific cell surface receptors which consist of complex sets of protein(s)-glycan-gangliosides and determine specific cell entry pathways. Recent data on structural and functional investigations of BoNT and TeNT receptors bring a better understanding of toxin trafficking in the host and entry into target neuronal cells, which is useful for the development of updated strategies of prevention and treatment of the corresponding diseases. Since clostridial neurotoxins, notably BoNTs, are important therapeutic tools, detailed knowledge of their activity opens the way of the development of engineered molecules for specific clinical applications. Full article
(This article belongs to the Section Bacterial Toxins)
Show Figures

Figure 1

16 pages, 5275 KB  
Article
A Study of Absolute Pressure Inside the Cabins of Land Transport Vehicles—The Concept of a Ventilation System Regulating the Pressure in the Vehicle
by Tomasz Janusz Teleszewski and Katarzyna Gładyszewska-Fiedoruk
Sensors 2026, 26(2), 469; https://doi.org/10.3390/s26020469 (registering DOI) - 10 Jan 2026
Abstract
This paper presents the concepts of a vehicle pressure regulation ventilation system based on the results of absolute pressure measurements in land transport vehicles: passenger cars, buses and trains. Despite the fact that absolute pressure affects human well-being and health, this parameter is [...] Read more.
This paper presents the concepts of a vehicle pressure regulation ventilation system based on the results of absolute pressure measurements in land transport vehicles: passenger cars, buses and trains. Despite the fact that absolute pressure affects human well-being and health, this parameter is often overlooked in studies assessing thermal comfort. Absolute pressure measurements were taken during normal passenger transport operation. The studies were conducted for various terrain types: lowlands, highlands, and mountains. Absolute pressure fluctuations in land transport depended primarily on altitude, with the largest atmospheric pressure differences recorded in mountains and the smallest in lowlands. A pressure change of 8 hPa within a 24 h period constitutes an unfavorable mechanical stimulus for the human body and causes changes in the excitability of the nervous system. In all measurement series, absolute pressure fluctuations exceeded 8 hPa. Based on the results of absolute pressure measurements and altitude, a simplified model for predicting absolute pressure in transport vehicles was developed. To reduce absolute pressure fluctuations inside passenger land vehicle cabins, a ventilation scheme regulating pressure inside land vehicle cabins was proposed. Full article
Show Figures

Figure 1

22 pages, 946 KB  
Review
Pathogenesis and Research Models of Acute Influenza-Associated Encephalitis/Encephalopathy: An Update
by Jintian Wei, Haoying Huang, Xiaohuan Wu, Yi Xu and Xiaohui Wang
Viruses 2026, 18(1), 95; https://doi.org/10.3390/v18010095 - 9 Jan 2026
Abstract
Influenza-associated encephalitis/encephalopathy (IAE) is a severe neurological complication characterized by central nervous system dysfunction and structural damage following influenza virus infection. Predominantly affecting infants and young children, IAE exhibits its highest incidence in those under five years of age. Key clinical manifestations of [...] Read more.
Influenza-associated encephalitis/encephalopathy (IAE) is a severe neurological complication characterized by central nervous system dysfunction and structural damage following influenza virus infection. Predominantly affecting infants and young children, IAE exhibits its highest incidence in those under five years of age. Key clinical manifestations of IAE include acute seizures, sudden high fever, and impaired consciousness, frequently progressing to coma. Neuroimaging, particularly magnetic resonance imaging (MRI), often reveals multifocal brain lesions involving multiple brain regions, including the cerebellum, brainstem, and corpus callosum. The prognosis of IAE is poor, with a mortality rate reaching 30%. Current diagnosis relies heavily on clinical presentation and characteristic neuroimaging findings, as the precise pathogenesis of IAE remains elusive. While various research models, including cell lines, brain organoids, and animal models, have been developed to recapitulate IAE features, significant limitations persist in modeling the core clinical pathophysiology observed in pediatric patients, necessitating further model refinement. This review synthesizes the clinical spectrum of IAE, summarizes progress in understanding its pathogenesis, and critically evaluates existing research models. We aim to provide a foundation for utilizing experimental approaches to elucidate IAE mechanisms and identify potential therapeutic strategies. Full article
(This article belongs to the Special Issue Extrapulmonary Manifestations of Respiratory Viruses in Children)
18 pages, 2480 KB  
Article
Polysaccharides Extraction from Opuntia milpa alta and Their Protective Effect on Alcohol-Induced Neuro 2a Cell Damage via Ferroptosis
by Congyue Xu, Lin Chen, Qin Ru and Yuxiang Wu
Foods 2026, 15(2), 249; https://doi.org/10.3390/foods15020249 - 9 Jan 2026
Abstract
Alcohol enters the brain through the blood–brain barrier and causes neuronal damage in various ways, additionally long-term and heavy drinking also leads to both structural and functional changes in the central nervous system. Currently, there is a lack of specific therapeutic approaches for [...] Read more.
Alcohol enters the brain through the blood–brain barrier and causes neuronal damage in various ways, additionally long-term and heavy drinking also leads to both structural and functional changes in the central nervous system. Currently, there is a lack of specific therapeutic approaches for alcohol-induced nerve injury. Opuntia milpa alta polysaccharides (MAPs) have various physiological activities such as antioxidant, anti-inflammatory, and neuroprotective effects, but it is not clear how they protect against alcohol-induced nerve injury. In this study, firstly, we structurally characterized homemade MAPs and analyzed the relevance of MAPs in protecting against alcoholic neuronal cell injury and ferroptosis. The results showed that MAPs consisted of nine different monosaccharides and uronic acids. High performance gel permeation chromatography analysis showed that MAPs were homogeneous heteropolysaccharides with an average molecular weight of 8.79 × 106 Da. Fourier infrared spectroscopy showed that they had sulfated pyranopolysaccharides with uronic acids and both α-glycosidic and β-glycosidic bonds were present. Specific signals of these sugars were observed in 1H and 13C NMR spectra. Favorable thermal stability was manifested up to 256 °C. The MAPs had a three-stranded helical structure and a low overall crystallinity. Iron staining showed that alcohol caused significant brown deposition in cells. MAPs significantly ameliorated alcohol-induced cellular damage, reduced iron deposition, and orchestrated the expression of proteins associated with ferroptosis. These results suggest that MAPs protect against alcohol-induced neurological damage, possibly by impeding the onset of cellular ferroptosis. Full article
Show Figures

Figure 1

21 pages, 1382 KB  
Article
Characterization of the Proteomic Response in SIM-A9 Murine Microglia Following Canonical NLRP3 Inflammasome Activation
by Nicolas N. Lafrenière, Karan Thakur, Gerard Agbayani, Melissa Hewitt, Klaudia Baumann, Jagdeep K. Sandhu and Arsalan S. Haqqani
Int. J. Mol. Sci. 2026, 27(2), 689; https://doi.org/10.3390/ijms27020689 - 9 Jan 2026
Abstract
Neuroinflammation is a hallmark of both acute and chronic neurodegenerative diseases and is driven, in part, by activated glial cells, including microglia. A key regulator of this inflammatory response is the NLRP3 inflammasome, an immune sensor that can be triggered by diverse, unrelated [...] Read more.
Neuroinflammation is a hallmark of both acute and chronic neurodegenerative diseases and is driven, in part, by activated glial cells, including microglia. A key regulator of this inflammatory response is the NLRP3 inflammasome, an immune sensor that can be triggered by diverse, unrelated stimuli such as pathogen-associated molecular patterns, cellular stress, and mitochondrial dysfunction. Despite progress in targeting NLRP3-mediated immune activation, many drug candidates fail, potentially due to the limited availability of physiologically relevant disease models. The SIM-A9 murine microglial cell line, established in 2014, has emerged as a widely used model for studying neuroinflammation; however, its proteome has not yet been systemically characterized. In this study, we investigated the proteomic landscape of SIM-A9 microglia treated with classical pro-inflammatory stimuli, including lipopolysaccharide (LPS) and extracellular ATP and nigericin (NG), to induce NLRP3 inflammasome activation. Using complementary proteomic approaches, we quantified 4903 proteins and observed significant enrichment of proteins associated with immune and nervous system processes. Differentially expressed proteins were consistent with an activated microglial phenotype, including the upregulation of proteins involved in NLRP3 inflammasome signaling. To our knowledge, this is the first comprehensive proteomic analysis of SIM-A9 microglia. These findings provide a foundational resource that may enhance the interpretation and design of future studies using SIM-A9 cells as a model of neuroinflammation. Full article
(This article belongs to the Section Molecular Neurobiology)
23 pages, 1856 KB  
Review
Advances in Fetal Repair of Spina Bifida Integrating Prenatal Surgery, Stem Cells, and Biomaterials
by Aleksandra Evangelista, Luigi Ruccolo, Valeria Friuli, Marco Benazzo, Bice Conti and Silvia Pisani
Biomedicines 2026, 14(1), 136; https://doi.org/10.3390/biomedicines14010136 - 9 Jan 2026
Abstract
Spina bifida (SB) is a congenital malformation of the central nervous system (CNS), resulting from incomplete closure of the neural tube (NT) during early embryogenesis. Myelomeningocele (MMC), the most severe form of SB, leads to progressive neurological, orthopedic, and urological dysfunctions due to [...] Read more.
Spina bifida (SB) is a congenital malformation of the central nervous system (CNS), resulting from incomplete closure of the neural tube (NT) during early embryogenesis. Myelomeningocele (MMC), the most severe form of SB, leads to progressive neurological, orthopedic, and urological dysfunctions due to both NT developmental failure and secondary intrauterine injury (“two-hit hypothesis”). Prenatal repair of MMC has progressed considerably since the Management of Myelomeningocele Study (MOMS, 2011) trial, which showed that open fetal surgery can decrease the need for shunting and improve motor function, although it carries significant maternal risks. To address these limitations, minimally invasive techniques have been developed, with the goal of achieving similar benefits for the fetus while reducing maternal morbidity. Recent research has shifted toward regenerative strategies, integrating mesenchymal stem cells (MSCs), bioengineered scaffolds, and cell-derived products to move beyond mere mechanical protection toward true NT repair. Preclinical studies in rodent and ovine models have shown that amniotic- and placenta-derived MSCs exert neuroprotective and immunomodulatory paracrine effects, promoting angiogenesis, modulating inflammation, and supporting tissue regeneration. Minimally invasive, cell-based interventions such as Transamniotic Stem Cell Therapy (TRASCET), in preclinical rodent models, offer the possibility of very early treatment without hysterotomy, although translation remains limited by the lack of large-animal validation and long-term safety data. In parallel, advances in biomaterials, nanostructured scaffolds, and exosome-based therapies reinforce a regenerative paradigm that may improve neurological outcomes and quality of life in affected children. Ongoing translational studies are essential to optimize these approaches and define their safety and efficacy in clinical settings. This review provides an integrated overview of embryological mechanisms, diagnostic strategies, and prenatal therapeutic advances in SB treatment, with emphasis on prenatal repair, fetal surgery and emerging regenerative approaches. Full article
(This article belongs to the Special Issue Advances in Fetal Medicine and Neonatology)
Show Figures

Graphical abstract

31 pages, 525 KB  
Systematic Review
Neurophysiological, Radiological, and Molecular Biomarkers of Pain-Related Conditions: An Umbrella Review
by Dmitriy Viderman, Sultan Kalikanov, Diyara Mukazhan and Bermet Nurmukhamed
J. Clin. Med. 2026, 15(2), 550; https://doi.org/10.3390/jcm15020550 - 9 Jan 2026
Viewed by 8
Abstract
Background/Objectives: Pain and pain-related conditions are considered a global health and financial burden. In order to improve pain management, pain intensity assessment, and pain diagnosis, various biomarkers have been proposed. Since their clinical utility is not proven yet, the aim of this [...] Read more.
Background/Objectives: Pain and pain-related conditions are considered a global health and financial burden. In order to improve pain management, pain intensity assessment, and pain diagnosis, various biomarkers have been proposed. Since their clinical utility is not proven yet, the aim of this umbrella review is to synthesize existing evidence of all types of pain biomarkers available. Methods: Systematic searches were conducted in PubMed, Scopus, and the Cochrane Library from inception to 2 June 2025. Eligible studies were systematic reviews and meta-analyses examining any clinical, biochemical, genetic, neurophysiological, or imaging biomarker related to pain. The screening of studies, data extraction, and assessment of methodological quality using the AMSTAR-2 tool were conducted by two independent reviewers. Findings were summarized narratively. Results: A total of 49 systematic reviews and meta-analyses were included. Most reviews were rated as low or critically low quality. Inflammatory biomarkers (CRP, IL-6, TNF-α) reported the most consistent associations with chronic musculoskeletal pain, while neuroimaging and EEG measures reflected central nervous system alterations. Proteomic multi-protein panels demonstrated exploratory diagnostic potential, particularly for fibromyalgia, but lacked clinical validation. Evidence for genetic, hormonal, metabolic, neurochemical, and tissue-specific biomarkers was inconsistent and methodologically limited, supporting mechanistic rather than clinical inference. Conclusions: No single biomarker has achieved clinical validation for chronic pain, but several biomarker classes show promise. Future implications include high-quality longitudinal studies, standardized protocols, and multidimensional biomarker panels. Full article
(This article belongs to the Special Issue New Insight into Pain and Chronic Pain Management)
Show Figures

Figure 1

15 pages, 270 KB  
Review
The Spectrum of Motor Disorders in Patients with Chronic Kidney Disease: Pathogenic Mechanisms, Clinical Manifestations, and Therapeutic Strategies
by Patryk Jerzak, Jakub Mizera, Tomasz Gołębiowski, Magdalena Kuriata-Kordek and Mirosław Banasik
J. Clin. Med. 2026, 15(2), 537; https://doi.org/10.3390/jcm15020537 - 9 Jan 2026
Viewed by 34
Abstract
Motor disorders are increasingly recognized as a significant complication of chronic kidney disease (CKD), yet they remain underdiagnosed, undertreated, and often overlooked in clinical practice. Patients with CKD experience a broad spectrum of motor disturbances, including restless legs syndrome, myoclonus, flapping tremor, periodic [...] Read more.
Motor disorders are increasingly recognized as a significant complication of chronic kidney disease (CKD), yet they remain underdiagnosed, undertreated, and often overlooked in clinical practice. Patients with CKD experience a broad spectrum of motor disturbances, including restless legs syndrome, myoclonus, flapping tremor, periodic limb movements in sleep, Parkinsonism, and peripheral neuropathy. These disorders arise from complex and often overlapping mechanisms such as uremic neurotoxicity, vascular injury, electrolyte and hormonal imbalances, or inflammatory processes, reflecting the systemic impact of impaired renal function on the central and peripheral nervous systems. The presence of motor disorders in CKD is associated with substantial clinical consequences for quality of life, contributing to impaired mobility, persistent insomnia, daytime fatigue, higher fall risk, and diminished independence. Moreover, these disturbances have been linked to increased cardiovascular morbidity and mortality, further exacerbating the already high burden of disease in this population. Current management approaches focus on optimizing kidney function through dialysis or transplantation, pharmacological therapies such as dopaminergic agents, gabapentinoids, and iron supplementation, as well as non-pharmacological interventions including structured exercise programs and sleep hygiene measures. Despite these strategies, robust evidence on long-term outcomes, comparative effectiveness, and optimal treatment algorithms remains limited. Greater recognition of the clinical impact of motor disorders in CKD, combined with targeted research efforts, is urgently needed to improve patient-centered outcomes and guide evidence-based care. Full article
(This article belongs to the Section Nephrology & Urology)
23 pages, 1378 KB  
Review
Mitochondrial Dysfunction: The Cellular Bridge from Emotional Stress to Disease Onset: A Narrative Review
by Sakthipriyan Venkatesan, Cristoforo Comi, Fabiola De Marchi, Teresa Esposito, Carla Gramaglia, Carlo Smirne, Mohammad Mostafa Ola Pour, Mario Pirisi, Rosanna Vaschetto, Patrizia Zeppegno and Elena Grossini
Biomolecules 2026, 16(1), 117; https://doi.org/10.3390/biom16010117 - 8 Jan 2026
Viewed by 201
Abstract
Severe emotional stress constitutes a significant public-health concern associated with negative health outcomes. Although the clinical effects are well acknowledged, the specific biological mechanisms that translate emotional suffering into systemic disease remain incompletely understood. Psychological stress activates the sympathetic nervous system and hypothalamic–pituitary–adrenal [...] Read more.
Severe emotional stress constitutes a significant public-health concern associated with negative health outcomes. Although the clinical effects are well acknowledged, the specific biological mechanisms that translate emotional suffering into systemic disease remain incompletely understood. Psychological stress activates the sympathetic nervous system and hypothalamic–pituitary–adrenal axis, which directly target mitochondria and alter their bioenergetic and redox capacity. For this reason, this narrative review proposes that mitochondria serve as the primary subcellular link in the mind–body connection, as they play a pivotal role in converting neuroendocrine signals into cellular dysfunction. In particular, we focus on the concept of mitochondrial allostatic load (MALT), a framework explaining how the progressive decline in mitochondrial functions, from their initial adaptive roles in energy production, reactive oxygen species signaling, and calcium regulation, to being sources of inflammation and systemic damage, occurs when stress exceeds regulatory limits. We also, discuss how this transition turns mitochondria from adaptive responders into drivers of multi-organ disease. In subsequent sections, we examine diagnostic potentials related to MALT, including the use of biomarkers, such as growth differentiation factor 15, cell-free mitochondrial desoxyribonucleic acid, and functional respirometry. Furthermore, we evaluate mitochondria-targeted therapeutic strategies, encompassing pharmacological compounds, such as mitoquinone mesylate, Skulachev ions, and elamipretide, alongside lifestyle and psychological interventions. Here, we aim to translate MALT biology into clinical applications, positioning mitochondrial health as a target for preventing and treating stress-related disorders. We propose that MALT may serve as a quantifiable bridge between emotional stress and somatic disease, enabling future precision medicine strategies integrating mitochondrial care. Full article
(This article belongs to the Special Issue Mitochondrial ROS in Health and Disease)
Show Figures

Figure 1

26 pages, 790 KB  
Review
Non-Apoptotic Programmed Cell Death: From Ultrastructural Characterization to Emerging Therapeutic Opportunities
by Philip Steiner, Lena Wiesbauer, Hubert H. Kerschbaum and Susanna Zierler
Cells 2026, 15(2), 111; https://doi.org/10.3390/cells15020111 - 8 Jan 2026
Viewed by 56
Abstract
Distinct forms of non-apoptotic programmed cell death (PCD) play a central role in human and animal health and their signaling cascades provide pharmacological targets for therapeutic interventions. Non-apoptotic modalities of programmed cell death include well characterized forms, such as ferroptosis, necroptosis, pyroptosis, autophagy, [...] Read more.
Distinct forms of non-apoptotic programmed cell death (PCD) play a central role in human and animal health and their signaling cascades provide pharmacological targets for therapeutic interventions. Non-apoptotic modalities of programmed cell death include well characterized forms, such as ferroptosis, necroptosis, pyroptosis, autophagy, paraptosis, as well as newly characterized varieties, such as cuproptosis, disulfidptosis, and erebosis. Each pathway exhibits unique molecular signaling signatures, ultrastructural characteristics, and functional outcomes that distinguish them from classical apoptosis. While pharmacological targets in the signaling cascade are promising objectives for overcoming apoptosis resistance in cancer therapy, inhibition of cell death in the myocardium or nervous system is critical for cytoprotection. This review provides detailed characterization and schematic visualization of cellular and subcellular hallmarks for each non-apoptotic PCD modality, facilitating their morphological identification. Understanding these diverse pathways is crucial for developing innovative therapeutic interventions in cancer, neurodegeneration, and inflammatory diseases. Full article
(This article belongs to the Special Issue Mechanisms and Therapies of Cell Death Pathways)
31 pages, 3998 KB  
Review
Obesity-Related Oxidative Stress and Antioxidant Properties of Natural Compounds in the Enteric Nervous System: A Literature Overview
by Vincenzo Bellitto, Daniele Tomassoni, Ilenia Martinelli, Giulio Nittari and Seyed Khosrow Tayebati
Antioxidants 2026, 15(1), 83; https://doi.org/10.3390/antiox15010083 - 8 Jan 2026
Viewed by 215
Abstract
The enteric nervous system (ENS) constitutes a highly organized and intricate neuronal network comprising two principal plexuses: myenteric and submucosal. These plexuses consist of neurons and enteric glial cells (EGCs). Neurons ensure innervation throughout the intestinal wall, whereas EGCs, distributed within the mucosa, [...] Read more.
The enteric nervous system (ENS) constitutes a highly organized and intricate neuronal network comprising two principal plexuses: myenteric and submucosal. These plexuses consist of neurons and enteric glial cells (EGCs). Neurons ensure innervation throughout the intestinal wall, whereas EGCs, distributed within the mucosa, contribute to epithelial barrier integrity and modulation of local inflammatory responses. The ENS orchestrates essential gastrointestinal functions, including motility, secretion, absorption, vascular regulation, and immune interactions with gut microbiota. Under physiological conditions, intestinal homeostasis involves moderate generation of reactive oxygen species (ROS) through endogenous processes such as mitochondrial oxidative phosphorylation. Cellular antioxidant systems maintain redox equilibrium; however, excessive ROS production induces oxidative stress, promoting EGCs activation toward a reactive phenotype characterized by pro-inflammatory cytokine release. This disrupts neuron–glia communication, predisposing to enteric neuroinflammation and neurodegeneration. Obesity, associated with hyperglycemia, hyperlipidemia, and micronutrient deficiencies, enhances ROS generation and inflammatory cascades, thereby impairing ENS integrity. Nevertheless, non-pharmacological strategies—including synthetic and natural antioxidants, bioactive dietary compounds, probiotics, and prebiotics—attenuate oxidative and inflammatory damage. This review summarizes preclinical and clinical evidence elucidating the interplay among the ENS, obesity-induced oxidative stress, inflammation, and the modulatory effects of antioxidant interventions. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Graphical abstract

20 pages, 1020 KB  
Article
Brain Volume Alterations and Cognitive Functions in Patients with Common Variable Immunodeficiency: Evaluating the Impact of Autoimmunity
by Filiz Sadi Aykan, Duygu Akın Saygın, Fatih Çölkesen, Necdet Poyraz, Recep Evcen, Mehmet Kılınç, Eray Yıldız, Tuğba Önalan, Fatma Arzu Akkuş, Elif Erat Çelik, Cemile Buket Tuğan Yıldız, Ganime Dilek Emlik and Şevket Arslan
J. Clin. Med. 2026, 15(2), 503; https://doi.org/10.3390/jcm15020503 - 8 Jan 2026
Viewed by 60
Abstract
Background: Common variable immunodeficiency is a heterogeneous disorder characterized by defects in antibody production and immune dysregulation, associated with infections and autoimmunity. Although structural and cognitive effects of CVID on the central nervous system have attracted attention in recent years, studies jointly addressing [...] Read more.
Background: Common variable immunodeficiency is a heterogeneous disorder characterized by defects in antibody production and immune dysregulation, associated with infections and autoimmunity. Although structural and cognitive effects of CVID on the central nervous system have attracted attention in recent years, studies jointly addressing volumetric brain imaging and neurocognitive evaluation remain limited. Materials and Methods: In this retrospective cross-sectional study, 35 patients with common variable immunodeficiency and 40 age- and sex-matched healthy controls were evaluated. Cognitive performance was assessed in all participants using the Montreal Cognitive Assessment. High-resolution T1-weighted brain magnetic resonance imaging scans underwent automated segmentation using the volBrain platform, yielding quantitative volumetric measurements of cortical, subcortical, and cerebellar structures, as well as ventricles and cerebrospinal fluid. Intergroup comparisons were performed using independent t-tests and analysis of variance. Results: MoCA scores were significantly lower in patients with CVID. Volumetric analysis revealed prominent reductions in the volumes of total brain tissue, gray matter, cerebrum, cerebellum, limbic system, thalamus, and basal ganglia. Paralleling these findings, cerebrospinal fluid and lateral ventricle volumes were increased. Additional volume losses were detected in CVID patients with low MoCA scores. In CVID patients with autoimmunity, volume loss affected broader areas. Conclusions: CVID appears to be associated with structural brain changes and cognitive impairments. Chronic inflammation and immune dysregulation may contribute to these neurodegenerative processes. Regular neurocognitive monitoring and further prospective studies are warranted in patients with CVID. Full article
(This article belongs to the Section Immunology & Rheumatology)
Show Figures

Figure 1

19 pages, 1836 KB  
Protocol
Decoding Cerebrospinal Fluid: Integrative Metabolomics Across Multiple Platforms
by Antoine Presset, Sylvie Bodard, Antoine Lefèvre, Edward Oujagir, Camille Dupuy, Jean-Michel Escoffre and Lydie Nadal-Desbarats
Methods Protoc. 2026, 9(1), 8; https://doi.org/10.3390/mps9010008 - 8 Jan 2026
Viewed by 138
Abstract
Cerebrospinal fluid (CSF) is a key biological matrix that reflects the physiological and pathological states of the central nervous system (CNS). It supports brain function by regulating ionic balance, facilitating molecular transport, and clearing metabolic waste. In this article, we present a standardized [...] Read more.
Cerebrospinal fluid (CSF) is a key biological matrix that reflects the physiological and pathological states of the central nervous system (CNS). It supports brain function by regulating ionic balance, facilitating molecular transport, and clearing metabolic waste. In this article, we present a standardized protocol for CSF collection along with an integrative multiplatform metabolomic workflow that combines proton nuclear magnetic resonance spectroscopy (1H-NMRS) and high-performance liquid chromatography coupled to mass spectrometry (HPLC-MS). Integrating these complementary analytical modalities enhances metabolite coverage and improves analytical robustness, enabling a more comprehensive and reliable characterization of the CSF metabolome. This workflow supports the discovery of potential biomarkers and advances our understanding of neurochemical alterations within the CNS. Full article
(This article belongs to the Section Omics and High Throughput)
Show Figures

Figure 1

Back to TopTop