Hippocampal Development and Epilepsy: Insights from Organoid Models
Abstract
1. Introduction
2. Topical Sections
2.1. Search Strategy and Selection Criteria
2.2. Structure, Development, and Functional Dynamics of the Hippocampus
2.3. Pathophysiological Changes in the Hippocampus in Epilepsy
2.4. Modeling Epilepsy Using Hippocampal Organoid
2.5. Genes and Neurotransmitter Markers in the Hippocampus Related to Epilepsy
2.6. Therapeutic Strategies and Future Directions for Epilepsy in the Developing Hippocampus
3. Discussion
Limitations
4. Conclusions and Future Directions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| TLE | Temporal Lobe Epilepsy |
| DG | Dentate Gyrus |
| CA | Cornu Ammonis |
| HFOs | High-Frequency Oscillations |
| hPSC | Human Pluripotent Stem Cell |
| Wnt3a | Wingless -Type MMTV Integration Site Family, Member 3A |
| SHH | Sonic Hedgehog |
| ZBTB20 | Zinc Finger and BTB Domain Containing 20 |
| PROX1 | Prospero Homeobox 1 |
| CB | Calbindin |
| CR | Calretinin |
| NPY | Neuropeptide R |
| SOM | Somatostatin |
| VIP | Vasoactive Intestinal Peptide |
| iPSCs | Induced Pluripotent Stem Cells |
| SCN8A | Sodium Voltage-Gated Channel Alpha Subunit 8 |
| LTP/LTD | Long-Term Potentiation/Long-Term Depression |
| EDD-13 | Epileptic Encephalopathy Type 13 |
| NeuN | Neuronal Nuclei |
| MAP2 | Microtubule-Associated Protein 2 |
| VGLUT | Vesicular Glutamate Transporters |
| NMDA | N-Methyl- D-Aspartate |
| GABA | Gamma-Aminobutyric Acid |
| ARX | Aristaless-Related Homeobox (gene regulating brain development and interneuron differentiation) |
| PV | Parvalbumin |
| GRIA1 | Glutamate Ionotropic Receptor AMPA Type Subunit 1 |
| GRIN2A | Glutamate Ionotropic Receptor NMDA Type Subunit 2A |
| SHISA9 | Shisa Family Member X |
| CACNG | Calcium Voltage Gated Channel Auxiliary Subunit (neuronal AMPA receptor modulation) |
| LITT | Laser Interstitial Thermal Therapy |
| ChAT | Choline Acetyltransferase |
| VNS | Vagus Nerve Stimulation |
| DBS | Deep Brain Stimulation |
References
- Guy-Evans, O. Hippocampus anatomy, function, location, and damage. In Book Hippocampus Anatomy, Function, Location, and Damage; Simply Psychology: London, UK, 2023; Available online: https://www.simplypsychology.org/hippocampus.html (accessed on 5 May 2025).
- Moodley, K.K.; Chan, D. The hippocampus in neurodegenerative disease. Front. Neurol. Neurosci. 2014, 34, 95–108. [Google Scholar]
- Kim, B.-Y.; Sohn, E.; Lee, M.-Y.; Jeon, W.-Y.; Jo, K.; Kim, Y.J.; Jeong, S.-J. Neurodegenerative pathways and metabolic changes in the hippocampus and cortex of mice exposed to urban particulate matter: Insights from an integrated interactome analysis. Sci. Total Environ. 2024, 945, 173673. [Google Scholar] [CrossRef]
- Porter, B.E. Neurogenesis and epilepsy in the developing brain. Epilepsia 2008, 49 (Suppl. 5), 50–54. [Google Scholar] [CrossRef]
- Sperber, E.F.; Moshe, S.L. The effects of seizures on the hippocampus of the immature brain. In International Review of Neurobiology; Academic Press: Cambridge, MA, USA, 2001; Volume 45, pp. 119–139. [Google Scholar]
- Cho, K.O.; Lybrand, Z.R.; Ito, N.; Brulet, R.; Tafacory, F.; Zhang, L.; Good, L.; Ure, K.; Kernie, S.G.; Birnbaum, S.G.; et al. Aberrant hippocampal neurogenesis contributes to epilepsy and associated cognitive decline. Nat. Commun. 2015, 6, 6606. [Google Scholar] [CrossRef]
- Anand, K.S.; Dhikav, V. Hippocampus in health and disease: An overview. Ann. Indian. Acad. Neurol. 2012, 15, 239–246. [Google Scholar] [PubMed]
- Stafstrom, C.E. The role of the subiculum in epilepsy and epileptogenesis. Epilepsy Curr. 2005, 5, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Knierim, J.J. The hippocampus. Curr. Biol. 2015, 25, R1116–R1121. [Google Scholar] [CrossRef] [PubMed]
- White, T.A.; Miller, S.L.; Sutherland, A.E.; Allison, B.J.; Camm, E.J. Perinatal compromise affects development, form, and function of the hippocampus part one; clinical studies. Pediatr. Res. 2024, 95, 1698–1708. [Google Scholar] [CrossRef]
- Bender, A.R.; Keresztes, A.; Bodammer, N.C.; Shing, Y.L.; Werkle-Bergner, M.; Daugherty, A.M.; Yu, Q.; Kühn, S.; Lindenberger, U.; Raz, N. Optimization and validation of automated hippocampal subfield segmentation across the lifespan. Hum. Brain Mapp. 2018, 39, 916–931. [Google Scholar] [CrossRef]
- Gómez, R.L.; Edgin, J.O. The extended trajectory of hippocampal development: Implications for early memory development and disorder. Dev. Cogn. Neurosci. 2016, 18, 57–69. [Google Scholar] [CrossRef]
- Wible, C.G. Hippocampal physiology, structure and function and the neuroscience of schizophrenia: A unified account of declarative memory deficits, working memory deficits and schizophrenic symptoms. Behav. Sci. 2013, 3, 298–315. [Google Scholar] [CrossRef]
- Fogwe, L.A.; Reddy, V.; Mesfin, F.B. Neuroanatomy, Hippocampus. In StatPearls; StatPearls Publishing Copyright © 2025; StatPearls Publishing LLC: Treasure Island, FL, USA, 2025. [Google Scholar]
- Sammons, R.P.; Vezir, M.; Moreno-Velasquez, L.; Cano, G.; Orlando, M.; Sievers, M.; Grasso, E.; Metodieva, V.D.; Kempter, R.; Schmidt, H.; et al. Structure and function of the hippocampal CA3 module. Proc. Natl. Acad. Sci. USA 2024, 121, e2312281120. [Google Scholar] [CrossRef] [PubMed]
- Daugherty, A.M.; Bender, A.R.; Raz, N.; Ofen, N. Age differences in hippocampal subfield volumes from childhood to late adulthood. Hippocampus 2016, 26, 220–228. [Google Scholar] [CrossRef]
- Aumont, E.; Bussy, A.; Bedard, M.-A.; Bezgin, G.; Therriault, J.; Savard, M.; Fernandez Arias, J.; Sziklas, V.; Vitali, P.; Poltronetti, N.M.; et al. Hippocampal subfield associations with memory depend on stimulus modality and retrieval mode. Brain Commun. 2023, 5, fcad309. [Google Scholar] [CrossRef]
- Mansouri, A.; Germann, J.; Boutet, A.; Elias, G.J.B.; Karmur, B.; Neudorfer, C.; Loh, A.; McAndrews, M.P.; Ibrahim, G.M.; Lozano, A.M.; et al. An exploratory study into the influence of laterality and location of hippocampal sclerosis on seizure prognosis and global cortical thinning. Sci. Rep. 2021, 11, 4686. [Google Scholar] [CrossRef]
- Chatzikonstantinou, A. Epilepsy and the hippocampus. Front. Neurol. Neurosci. 2014, 34, 121–142. [Google Scholar] [PubMed]
- Mokhothu, T.M.; Tanaka, K.Z. Characterizing Hippocampal Oscillatory Signatures Underlying Seizures in Temporal Lobe Epilepsy. Front. Behav. Neurosci. 2021, 15, 785328. [Google Scholar] [CrossRef] [PubMed]
- Blümcke, I.; Coras, R.; Miyata, H.; Ozkara, C. Defining clinico-neuropathological subtypes of mesial temporal lobe epilepsy with hippocampal sclerosis. Brain Pathol. 2012, 22, 402–411. [Google Scholar] [CrossRef]
- Choy, M.; Dadgar-Kiani, E.; Cron, G.O.; Duffy, B.A.; Schmid, F.; Edelman, B.J.; Asaad, M.; Chan, R.W.; Vahdat, S.; Lee, J.H. Repeated hippocampal seizures lead to brain-wide reorganization of circuits and seizure propagation pathways. Neuron 2022, 110, 221–236.e224. [Google Scholar] [CrossRef]
- Walker, M.C. Hippocampal Sclerosis: Causes and Prevention. Semin. Neurol. 2015, 35, 193–200. [Google Scholar] [CrossRef]
- Swann, J.W. The impact of seizures on developing hippocampal networks. Prog. Brain Res. 2005, 147, 347–354. [Google Scholar]
- Chen, L.; Xu, Y.; Cheng, H.; Li, Z.; Lai, N.; Li, M.; Ruan, Y.; Zheng, Y.; Fei, F.; Xu, C.; et al. Adult-born neurons in critical period maintain hippocampal seizures via local aberrant excitatory circuits. Signal Transduct. Target. Ther. 2023, 8, 225. [Google Scholar] [CrossRef]
- Casanova, J.R.; Nishimura, M.; Swann, J.W. The effects of early-life seizures on hippocampal dendrite development and later-life learning and memory. Brain Res. Bull. 2014, 103, 39–48. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Postnikova, T.Y.; Griflyuk, A.V.; Amakhin, D.V.; Kovalenko, A.A.; Soboleva, E.B.; Zubareva, O.E.; Zaitsev, A.V. Early Life Febrile Seizures Impair Hippocampal Synaptic Plasticity in Young Rats. Int. J. Mol. Sci. 2021, 22, 8218. [Google Scholar] [CrossRef] [PubMed]
- Xing, B.; Barbour, A.J.; Vithayathil, J.; Li, X.; Dutko, S.; Fawcett-Patel, J.; Lancaster, E.; Talos, D.M.; Jensen, F.E. Reversible synaptic adaptations in a subpopulation of murine hippocampal neurons following early-life seizures. J. Clin. Investig. 2024, 134, e175167. [Google Scholar] [CrossRef]
- Nishimura, M.; Gu, X.; Swann, J.W. Seizures in early life suppress hippocampal dendrite growth while impairing spatial learning. Neurobiol. Dis. 2011, 44, 205–214. [Google Scholar] [CrossRef]
- Lancaster, M.A.; Renner, M.; Martin, C.-A.; Wenzel, D.; Bicknell, L.S.; Hurles, M.E.; Homfray, T.; Penninger, J.M.; Jackson, A.P.; Knoblich, J.A. Cerebral organoids model human brain development and microcephaly. Nature 2013, 501, 373–379. [Google Scholar] [CrossRef]
- Vaez Ghaemi, R.; Co, I.L.; McFee, M.C.; Yadav, V.G. Brain organoids: A new, transformative investigational tool for neuroscience research. Adv. Biosyst. 2019, 3, 1800174. [Google Scholar] [CrossRef]
- Chen, H.I.; Song, H.; Ming, G.L. Applications of human brain organoids to clinical problems. Dev. Dyn. 2019, 248, 53–64. [Google Scholar] [CrossRef] [PubMed]
- Qian, X.; Song, H.; Ming, G.L. Brain organoids: Advances, applications and challenges. Development 2019, 146, dev166074. [Google Scholar] [CrossRef]
- Adlakha, Y.K. Human 3D brain organoids: Steering the demolecularization of brain and neurological diseases. Cell Death Discov. 2023, 9, 221. [Google Scholar] [CrossRef]
- Yu, D.X.; Di Giorgio, F.P.; Yao, J.; Marchetto, M.C.; Brennand, K.; Wright, R.; Mei, A.; Mchenry, L.; Lisuk, D.; Grasmick, J.M. Modeling hippocampal neurogenesis using human pluripotent stem cells. Stem Cell Rep. 2014, 2, 295–310. [Google Scholar] [CrossRef] [PubMed]
- Ciarpella, F.; Zamfir, R.G.; Campanelli, A.; Ren, E.; Pedrotti, G.; Bottani, E.; Borioli, A.; Caron, D.; Di Chio, M.; Dolci, S.; et al. Murine cerebral organoids develop network of functional neurons and hippocampal brain region identity. iScience 2021, 24, 103438. [Google Scholar] [CrossRef]
- Ciarpella, F.; Zamfir, R.G.; Campanelli, A.; Pedrotti, G.; Di Chio, M.; Bottani, E.; Decimo, I. Generation of mouse hippocampal brain organoids from primary embryonic neural stem cells. STAR Protoc. 2023, 4, 102413. [Google Scholar] [CrossRef]
- Jacob, F.; Pather, S.R.; Huang, W.-K.; Zhang, F.; Wong, S.Z.H.; Zhou, H.; Cubitt, B.; Fan, W.; Chen, C.Z.; Xu, M. Human pluripotent stem cell-derived neural cells and brain organoids reveal SARS-CoV-2 neurotropism predominates in choroid plexus epithelium. Cell Stem Cell 2020, 27, 937–950.e939. [Google Scholar] [CrossRef]
- Sarkar, A.; Mei, A.; Paquola, A.C.; Stern, S.; Bardy, C.; Klug, J.R.; Kim, S.; Neshat, N.; Kim, H.J.; Ku, M. Efficient generation of CA3 neurons from human pluripotent stem cells enables modeling of hippocampal connectivity in vitro. Cell Stem Cell 2018, 22, 684–697.e689. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Cheng, J.; Qi, J.; Hang, C.; Dong, R.; Low, B.C.; Yu, H.; Jiang, X. Three-dimensional liquid metal-based neuro-interfaces for human hippocampal organoids. Nat. Commun. 2024, 15, 4047. [Google Scholar] [CrossRef] [PubMed]
- Sakaguchi, H.; Kadoshima, T.; Soen, M.; Narii, N.; Ishida, Y.; Ohgushi, M.; Takahashi, J.; Eiraku, M.; Sasai, Y. Generation of functional hippocampal neurons from self-organizing human embryonic stem cell-derived dorsomedial telencephalic tissue. Nat. Commun. 2015, 6, 8896. [Google Scholar] [CrossRef]
- Pomeshchik, Y.; Klementieva, O.; Gil, J.; Martinsson, I.; Hansen, M.G.; de Vries, T.; Sancho-Balsells, A.; Russ, K.; Savchenko, E.; Collin, A.; et al. Human iPSC-Derived Hippocampal Spheroids: An Innovative Tool for Stratifying Alzheimer Disease Patient-Specific Cellular Phenotypes and Developing Therapies. Stem Cell Rep. 2020, 15, 256–273. [Google Scholar] [CrossRef]
- Kim, S.H.; Chang, M.Y. Application of Human Brain Organoids-Opportunities and Challenges in Modeling Human Brain Development and Neurodevelopmental Diseases. Int. J. Mol. Sci. 2023, 24, 12528. [Google Scholar] [CrossRef]
- Adeyeye, A.; Mirsadeghi, S.; Gutierrez, M.; Hsieh, J. Integrating adult neurogenesis and human brain organoid models to advance epilepsy and associated behavioral research. Epilepsy Behav. 2024, 159, 109982. [Google Scholar] [CrossRef]
- Nieto-Estévez, V.; Hsieh, J. Human Brain Organoid Models of Developmental Epilepsies. Epilepsy Curr. 2020, 20, 282–290. [Google Scholar] [CrossRef]
- McCrimmon, C.M.; Toker, D.; Pahos, M.; Cao, Q.; Lozano, K.; Lin, J.J.; Parent, J.M.; Tidball, A.; Zheng, J.; Molnár, L.; et al. Cortical versus hippocampal network dysfunction in a human brain assembloid model of epilepsy and intellectual disability. Cell Rep. 2025, 44, 116217. [Google Scholar] [CrossRef] [PubMed]
- Brunklaus, A.; Brünger, T.; Feng, T.; Fons, C.; Lehikoinen, A.; Panagiotakaki, E.; Vintan, M.-A.; Symonds, J.; Andrew, J.; Arzimanoglou, A.; et al. The gain of function SCN1A disorder spectrum: Novel epilepsy phenotypes and therapeutic implications. Brain 2022, 145, 3816–3831. [Google Scholar] [CrossRef]
- Ogiwara, I.; Miyamoto, H.; Tatsukawa, T.; Yamagata, T.; Nakayama, T.; Atapour, N.; Miura, E.; Mazaki, E.; Ernst, S.J.; Cao, D.; et al. Nav1.2 haplodeficiency in excitatory neurons causes absence-like seizures in mice. Commun. Biol. 2018, 1, 96. [Google Scholar] [CrossRef]
- Shcheglovitov, A.; Peterson, R.T. Screening Platforms for Genetic Epilepsies-Zebrafish, iPSC-Derived Neurons, and Organoids. Neurotherapeutics 2021, 18, 1478–1489. [Google Scholar] [CrossRef]
- Wu, J.; Chen, X.; Zhang, J.; Wettschurack, K.; Robinson, M.; Li, W.; Zhao, Y.; Yoo, Y.E.; Deming, B.A.; Abeyaratna, A.D.; et al. Human microglia in brain assembloids display region-specific diversity and respond to hyperexcitable neurons carrying SCN2A mutation: Microglial diversity and response in assembloids. bioRxiv 2025, in press. [Google Scholar]
- Valassina, N.; Brusco, S.; Salamone, A.; Serra, L.; Luoni, M.; Giannelli, S.; Bido, S.; Massimino, L.; Ungaro, F.; Mazzara, P.G.; et al. Scn1a gene reactivation after symptom onset rescues pathological phenotypes in a mouse model of Dravet syndrome. Nat. Commun. 2022, 13, 161. [Google Scholar] [CrossRef]
- Mao, M.; Mattei, C.; Rollo, B.; Byars, S.; Cuddy, C.; Berecki, G.; Heighway, J.; Pachernegg, S.; Menheniott, T.; Apted, D.; et al. Distinctive In Vitro Phenotypes in iPSC-Derived Neurons from Patients with Gain- and Loss-of-Function SCN2A Developmental and Epileptic Encephalopathy. J. Neurosci. 2024, 44, e0692232023. [Google Scholar] [PubMed]
- Wheeler, D.W.; White, C.M.; Rees, C.L.; Komendantov, A.O.; Hamilton, D.J.; Ascoli, G.A. Hippocampome.org: A knowledge base of neuron types in the rodent hippocampus. eLife 2015, 4, e09960. [Google Scholar] [CrossRef] [PubMed]
- Rees, C.L.; White, C.M.; Ascoli, G.A. Neurochemical Markers in the Mammalian Brain: Structure, Roles in Synaptic Communication, and Pharmacological Relevance. Curr. Med. Chem. 2017, 24, 3077–3103. [Google Scholar] [CrossRef][Green Version]
- Orta-Salazar, E.; Cuellar-Lemus, C.A.; Díaz-Cintra, S.; Feria-Velasco, A.I. Cholinergic markers in the cortex and hippocampus of some animal species and their correlation to Alzheimer’s disease. Neurol. (Engl. Ed.) 2014, 29, 497–503. [Google Scholar] [CrossRef]
- Pfisterer, U.; Petukhov, V.; Demharter, S.; Meichsner, J.; Thompson, J.J.; Batiuk, M.Y.; Asenjo-Martinez, A.; Vasistha, N.A.; Thakur, A.; Mikkelsen, J.; et al. Identification of epilepsy-associated neuronal subtypes and gene expression underlying epileptogenesis. Nat. Commun. 2020, 11, 5038. [Google Scholar]
- Liang, M.; Zhang, L.; Geng, Z. Advances in the Development of Biomarkers for Poststroke Epilepsy. Biomed Res. Int. 2021, 5567046. [Google Scholar]
- Danis, A.B.; Gallagher, A.A.; Anderson, A.N.; Isakharov, A.; Beeson, K.A.; Schnell, E. Altered Hippocampal Activation in Seizure-Prone CACNA2D2 Knock-out Mice. eNeuro 2024, 11. [Google Scholar]
- Lepeu, G.; van Maren, E.; Slabeva, K.; Friedrichs-Maeder, C.; Fuchs, M.; Z’Graggen, W.J.; Pollo, C.; Schindler, K.A.; Adamantidis, A.; Proix, T.; et al. The critical dynamics of hippocampal seizures. Nat. Commun. 2024, 15, 6945. [Google Scholar]
- Friocourt, G.; Parnavelas, J.G. Mutations in ARX Result in Several Defects Involving GABAergic Neurons. Front. Cell Neurosci. 2010, 4, 4. [Google Scholar] [CrossRef]
- Fulp, C.T.; Cho, G.; Marsh, E.D.; Nasrallah, I.M.; Labosky, P.A.; Golden, J.A. Identification of Arx transcriptional targets in the developing basal forebrain. Hum. Mol. Genet. 2008, 17, 3740–3760. [Google Scholar] [CrossRef]
- Ray, A.; Wyllie, E. Treatment options and paradigms in childhood temporal lobe epilepsy. Expert. Rev. Neurother. 2005, 5, 785–801. [Google Scholar] [CrossRef]
- Lolam, V.; Roy, A. Developmental mechanisms underlying pediatric epilepsy. Front. Neurol. 2025, 16, 1586947. [Google Scholar] [CrossRef] [PubMed]
- Clossen, B.L.; Reddy, D.S. Novel therapeutic approaches for disease-modification of epileptogenesis for curing epilepsy. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2017, 1863, 1519–1538. [Google Scholar] [CrossRef]
- Ephraim, J.W.; Caron, D.; Canal-Alonso, A.; Corchado, J.M.; Palazzolo, G.; Panuccio, G. Developing hippocampal spheroids model ictogenesis and epileptogenesis. bioRxiv 2023. [Google Scholar] [CrossRef]
- Kang, R.; Park, S.; Shin, S.; Bak, G.; Park, J.-C. Electrophysiological insights with brain organoid models: A brief review. BMB Rep. 2024, 57, 311. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, P.; Jethwa, K.; Rathawa, A.; Chauhan, G.; Mehra, S. The Anatomy of the Hippocampus. In Cerebral Ischemia; Pluta, R., Ed.; Exon Publications: Brisbane, Australia, 2021. [Google Scholar]
- Scoville, W.B.; Milner, B. Loss of recent memory after bilateral hippocampal lesions. 1957. J. Neuropsychiatry Clin. Neurosci. 2000, 12, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Ben-Ari, Y.; Holmes, G.L. Effects of seizures on developmental processes in the immature brain. Lancet Neurol. 2006, 5, 1055–1063. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.H.; Luo, S.; Zhang, D.M.; Lin, Z.S.; Lan, S.; Li, X.; Shi, Y.W.; Su, T.; Yi, Y.H.; Zhou, P.; et al. De novo GABRA1 variants in childhood epilepsies and the molecular subregional effects. Front. Mol. Neurosci. 2023, 16, 1321090. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Guo, S.; Xu, S.; Chen, Z.; Wang, L.; Ding, J.; Huo, J.; Xiao, L.; He, Z.; Jin, Z.; et al. Neocortex- and hippocampus-specific deletion of Gabrg2 causes temperature-dependent seizures in mice. Cell Death Dis. 2021, 12, 553. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joo, J.; Yang, W.S.; Koh, H.J. Hippocampal Development and Epilepsy: Insights from Organoid Models. Brain Sci. 2025, 15, 1231. https://doi.org/10.3390/brainsci15111231
Joo J, Yang WS, Koh HJ. Hippocampal Development and Epilepsy: Insights from Organoid Models. Brain Sciences. 2025; 15(11):1231. https://doi.org/10.3390/brainsci15111231
Chicago/Turabian StyleJoo, Jin, Woo Sub Yang, and Hyun Jung Koh. 2025. "Hippocampal Development and Epilepsy: Insights from Organoid Models" Brain Sciences 15, no. 11: 1231. https://doi.org/10.3390/brainsci15111231
APA StyleJoo, J., Yang, W. S., & Koh, H. J. (2025). Hippocampal Development and Epilepsy: Insights from Organoid Models. Brain Sciences, 15(11), 1231. https://doi.org/10.3390/brainsci15111231

