Changes in Plasma TPH2, GDNF, Trk-b, BDNF, and proBDNF in People Who Died by Suicide
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristics of Suicide and Healthy Control Subjects
2.2. Acquisition of Plasma Samples from Suicide Subjects
2.3. Blood Collection Method
2.4. Serum Peptide Concentration Measurement
2.5. Statistical Analysis
3. Results
3.1. Changes in Plasma Levels of proBDNF between Suicide and Control Subjects
3.2. Changes in Plasma Levels of GDNF between Suicide and Control Subjects
3.3. Changes in Plasma Levels of BDNF/proBDNF between Suicide and Control Subjects
3.4. Changes in Plasma Levels of BDNF between Suicide and Control Subjects
3.5. Changes in Plasma Levels of Trk-b between Suicide and Control Subjects
3.6. Correlations between Different Serum Peptide Levels and General Information
3.7. Hierarchical Regression Analysis of BDNF, proBDNF, GDNF, Trk-b, and TPH2 on Suicide Risk
4. Discussion
5. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Berardis, D.; Vellante, F.; Pettorruso, M.; Lucidi, L.; Tambelli, A.; Di Muzio, I.; Gianfelice, G.; Ventriglio, A.; Fornaro, M.; Serafini, G.; et al. Suicide and Genetic Biomarkers: Toward Personalized Tailored-treatment with Lithium and Clozapine. Curr. Pharm. Des. 2021, 27, 3293–3304. [Google Scholar] [CrossRef] [PubMed]
- De Berardis, D.; Martinotti, G.; Di Giannantonio, M. Editorial: Understanding the Complex Phenomenon of Suicide: From Research to Clinical Practice. Front. Psychiatry 2018, 9, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bachmann, S. Epidemiology of Suicide and the Psychiatric Perspective. Int. J. Environ. Res. Public Health 2018, 15, 1425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kulak-Bejda, A.; Bejda, G.; Lech, M.; Waszkiewicz, N. Are Lipids Possible Markers of Suicide Behaviors? J. Clin. Med. 2021, 10, 333. [Google Scholar] [CrossRef]
- Pratelli, M.; Pasqualetti, M. Serotonergic neurotransmission manipulation for the understanding of brain development and function: Learning from Tph2 genetic models. Biochimie 2019, 161, 3–14. [Google Scholar] [CrossRef]
- De Luca, V.; Hlousek, D.; Likhodi, O.; Van Tol, H.H.; Kennedy, J.L.; Wong, A.H. The interaction between TPH2 promoter haplotypes and clinical-demographic risk factors in suicide victims with major psychoses. Genes Brain. Behav. 2006, 5, 107–110. [Google Scholar] [CrossRef]
- Walther, D.J.; Peter, J.U.; Bashammakh, S.; Hortnagl, H.; Voits, M.; Fink, H.; Bader, M. Synthesis of serotonin by a second tryptophan hydroxylase isoform. Science 2003, 299, 76. [Google Scholar] [CrossRef]
- Waider, J.; Araragi, N.; Gutknecht, L.; Lesch, K.P. Tryptophan hydroxylase-2 (TPH2) in disorders of cognitive control and emotion regulation: A perspective. Psychoneuroendocrinology 2011, 36, 393–405. [Google Scholar] [CrossRef]
- Ren, J.; Friedmann, D.; Xiong, J.; Liu, C.D.; Ferguson, B.R.; Weerakkody, T.; DeLoach, K.E.; Ran, C.; Pun, A.; Sun, Y.; et al. Anatomically Defined and Functionally Distinct Dorsal Raphe Serotonin Sub-systems. Cell 2018, 175, 472–487.e20. [Google Scholar] [CrossRef] [Green Version]
- Zill, P.; Baghai, T.C.; Zwanzger, P.; Schule, C.; Eser, D.; Rupprecht, R.; Moller, H.J.; Bondy, B.; Ackenheil, M. SNP and haplotype analysis of a novel tryptophan hydroxylase isoform (TPH2) gene provide evidence for association with major depression. Mol. Psychiatry 2004, 9, 1030–1036. [Google Scholar] [CrossRef] [Green Version]
- Lee, E.; Son, H. Adult hippocampal neurogenesis and related neurotrophic factors. BMB Rep. 2009, 42, 239–244. [Google Scholar] [CrossRef] [Green Version]
- Sendtner, M.; Pei, G.; Beck, M.; Schweizer, U.; Wiese, S. Developmental motoneuron cell death and neurotrophic factors. Cell Tissue Res. 2000, 301, 71–84. [Google Scholar] [CrossRef]
- Linker, R.; Gold, R.; Luhder, F. Function of neurotrophic factors beyond the nervous system: Inflammation and autoimmune demyelination. Crit. Rev. Immunol. 2009, 29, 43–68. [Google Scholar] [CrossRef]
- Cintron-Colon, A.F.; Almeida-Alves, G.; Boynton, A.M.; Spitsbergen, J.M. GDNF synthesis, signaling, and retrograde transport in motor neurons. Cell Tissue Res. 2020, 382, 47–56. [Google Scholar] [CrossRef]
- Pascual, A.; Hidalgo-Figueroa, M.; Gomez-Diaz, R.; Lopez-Barneo, J. GDNF and protection of adult central catecholaminergic neurons. J. Mol. Endocrinol. 2011, 46, R83–R92. [Google Scholar] [CrossRef]
- Ibanez, C.F.; Andressoo, J.O. Biology of GDNF and its receptors—Relevance for disorders of the central nervous system. Neurobiol. Dis. 2017, 97 Pt B, 80–89. [Google Scholar] [CrossRef]
- Popova, N.K.; Ilchibaeva, T.V.; Naumenko, V.S. Neurotrophic Factors (BDNF and GDNF) and the Serotonergic System of the Brain. Biochemistry 2017, 82, 308–317. [Google Scholar] [CrossRef]
- Maheu, M.; Lopez, J.P.; Crapper, L.; Davoli, M.A.; Turecki, G.; Mechawar, N. MicroRNA regulation of central glial cell line-derived neurotrophic factor (GDNF) signalling in depression. Transl. Psychiatry 2015, 5, e511. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Li, P.; Ma, X.; Zhang, J.; Sun, X.; Luo, X.; Zhang, Y. Association between plasma levels of BDNF and GDNF and the diagnosis, treatment response in first-episode MDD. J. Affect. Disord. 2022, 315, 190–197. [Google Scholar] [CrossRef]
- Colucci-D’Amato, L.; Speranza, L.; Volpicelli, F. Neurotrophic Factor BDNF, Physiological Functions and Therapeutic Potential in Depression, Neurodegeneration and Brain Cancer. Int. J. Mol. Sci. 2020, 21, 7777. [Google Scholar] [CrossRef]
- Icick, R.; Bloch, V.; Prince, N.; Karsinti, E.; Lepine, J.P.; Laplanche, J.L.; Mouly, S.; Marie-Claire, C.; Brousse, G.; Bellivier, F.; et al. Clustering suicidal phenotypes and genetic associations with brain-derived neurotrophic factor in patients with substance use disorders. Transl. Psychiatry 2021, 11, 72. [Google Scholar] [CrossRef] [PubMed]
- Misztak, P.; Panczyszyn-Trzewik, P.; Nowak, G.; Sowa-Kucma, M. Epigenetic marks and their relationship with BDNF in the brain of suicide victims. PLoS ONE 2020, 15, e0239335. [Google Scholar] [CrossRef] [PubMed]
- Malhi, G.S.; Mann, J.J. Depression. Lancet 2018, 392, 2299–2312. [Google Scholar] [CrossRef] [PubMed]
- Cieslik, K.; Sowa-Kucma, M.; Ossowska, G.; Legutko, B.; Wolak, M.; Opoka, W.; Nowak, G. Chronic unpredictable stress-induced reduction in the hippocampal brain-derived neurotrophic factor (BDNF) gene expression is antagonized by zinc treatment. Pharmacol. Rep. 2011, 63, 537–543. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.Y.; Ruan, C.S.; Yang, C.R.; Li, J.Y.; Kang, Z.L.; Zhou, L.; Liu, D.; Zeng, Y.Q.; Wang, T.H.; Tian, C.F.; et al. ProBDNF Signaling Regulates Depression-Like Behaviors in Rodents under Chronic Stress. Neuropsychopharmacology 2016, 41, 2882–2892. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Siao, C.J.; Nagappan, G.; Marinic, T.; Jing, D.; McGrath, K.; Chen, Z.Y.; Mark, W.; Tessarollo, L.; Lee, F.S.; et al. Neuronal release of proBDNF. Nat. Neurosci. 2009, 12, 113–115. [Google Scholar] [CrossRef] [Green Version]
- Cohen-Cory, S.; Kidane, A.H.; Shirkey, N.J.; Marshak, S. Brain-derived neurotrophic factor and the development of structural neuronal connectivity. Dev. Neurobiol. 2010, 70, 271–288. [Google Scholar] [CrossRef] [Green Version]
- Gaub, P.; de Leon, A.; Gibon, J.; Soubannier, V.; Dorval, G.; Seguela, P.; Barker, P.A. HBpF-proBDNF: A New Tool for the Analysis of Pro-Brain Derived Neurotrophic Factor Receptor Signaling and Cell Biology. PLoS ONE 2016, 11, e0150601. [Google Scholar] [CrossRef] [Green Version]
- Cao, W.; Duan, J.; Wang, X.; Zhong, X.; Hu, Z.; Huang, F.; Wang, H.; Zhang, J.; Li, F.; Zhang, J.; et al. Early enriched environment induces an increased conversion of proBDNF to BDNF in the adult rat’s hippocampus. Behav. Brain Res. 2014, 265, 76–83. [Google Scholar] [CrossRef]
- Erbay, L.G.; Karlidag, R.; Oruc, M.; Cigremis, Y.; Celbis, O. Association of BDNF / TrkB and NGF / TrkA Levels in Postmortem Brain with Major Depression and Suicide. Psychiatr. Danub. 2021, 33, 491–498. [Google Scholar] [CrossRef]
- Kronenberg, G.; Mosienko, V.; Gertz, K.; Alenina, N.; Hellweg, R.; Klempin, F. Increased brain-derived neurotrophic factor (BDNF) protein concentrations in mice lacking brain serotonin. Eur. Arch. Psychiatry Clin. Neurosci. 2016, 266, 281–284. [Google Scholar] [CrossRef] [Green Version]
- Gupta, V.K.; You, Y.; Gupta, V.B.; Klistorner, A.; Graham, S.L. TrkB receptor signalling: Implications in neurodegenerative, psychiatric and proliferative disorders. Int. J. Mol. Sci. 2013, 14, 10122–10142. [Google Scholar] [CrossRef] [Green Version]
- Pandey, G.N.; Ren, X.; Rizavi, H.S.; Conley, R.R.; Roberts, R.C.; Dwivedi, Y. Brain-derived neurotrophic factor and tyrosine kinase B receptor signalling in post-mortem brain of teenage suicide victims. Int. J. Neuropsychopharmacol. 2008, 11, 1047–1061. [Google Scholar] [CrossRef] [Green Version]
- Brundin, L.; Bjorkqvist, M.; Petersen, A.; Traskman-Bendz, L. Reduced orexin levels in the cerebrospinal fluid of suicidal patients with major depressive disorder. Eur. Neuropsychopharmacol. 2007, 17, 573–579. [Google Scholar] [CrossRef]
- Traskman, L.; Asberg, M.; Bertilsson, L.; Sjostrand, L. Monoamine metabolites in CSF and suicidal behavior. Arch Gen. Psychiatry 1981, 38, 631–636. [Google Scholar] [CrossRef]
- Valentino, R.J.; Commons, K.G. Peptides that fine-tune the serotonin system. Neuropeptides 2005, 39, 1–8. [Google Scholar] [CrossRef]
- Donner, N.C.; Johnson, P.L.; Fitz, S.D.; Kellen, K.E.; Shekhar, A.; Lowry, C.A. Elevated tph2 mRNA expression in a rat model of chronic anxiety. Depress. Anxiety 2012, 29, 307–319. [Google Scholar] [CrossRef] [Green Version]
- Marcinko, D.; Pivac, N.; Martinac, M.; Jakovljevic, M.; Mihaljevic-Peles, A.; Muck-Seler, D. Platelet serotonin and serum cholesterol concentrations in suicidal and non-suicidal male patients with a first episode of psychosis. Psychiatry Res. 2007, 150, 105–108. [Google Scholar] [CrossRef]
- Arita, H. The neuroscience of suicide. Brain Nerve 2012, 64, 929–935. [Google Scholar]
- Donner, N.C.; Kubala, K.H.; Hassell, J.E., Jr.; Lieb, M.W.; Nguyen, K.T.; Heinze, J.D.; Drugan, R.C.; Maier, S.F.; Lowry, C.A. Two models of inescapable stress increase tph2 mRNA expression in the anxiety-related dorsomedial part of the dorsal raphe nucleus. Neurobiol. Stress 2018, 8, 68–81. [Google Scholar] [CrossRef]
- Luo, L.; Li, C.; Du, X.; Shi, Q.; Huang, Q.; Xu, X.; Wang, Q. Effect of aerobic exercise on BDNF/proBDNF expression in the ischemic hippocampus and depression recovery of rats after stroke. Behav. Brain Res. 2019, 362, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Qiao, H.; An, S.C.; Xu, C.; Ma, X.M. Role of proBDNF and BDNF in dendritic spine plasticity and depressive-like behaviors induced by an animal model of depression. Brain Res. 2017, 1663, 29–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bilgic, A.; Celikkol Sadic, C.; Kilinc, I.; Akca, O.F. Exploring the association between depression, suicidality and serum neurotrophin levels in adolescents. Int. J. Psychiatry. Clin. Pract. 2020, 24, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Hisaoka, K.; Nishida, A.; Takebayashi, M.; Koda, T.; Yamawaki, S.; Nakata, Y. Serotonin increases glial cell line-derived neurotrophic factor release in rat C6 glioblastoma cells. Brain Res. 2004, 1002, 167–170. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Zhu, H.Y.; Li, B.; Wang, Y.Q.; Yu, J.; Wu, G.C. Chronic clomipramine treatment restores hippocampal expression of glial cell line-derived neurotrophic factor in a rat model of depression. J. Affect Disord. 2012, 141, 367–372. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.; Aron, L.; Klein, R.; Li, M.; Wurst, W.; Prakash, N.; Le, W. Pitx3 is a critical mediator of GDNF-induced BDNF expression in nigrostriatal dopaminergic neurons. J. Neurosci. 2011, 31, 12802–12815. [Google Scholar] [CrossRef] [Green Version]
- Smith, M.A.; Makino, S.; Kvetnansky, R.; Post, R.M. Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus. J. Neurosci. 1995, 15 Pt 1, 1768–1777. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.; Fu, X.Y.; Zhou, X.F.; Liu, D.; Bobrovskaya, L.; Zhou, L. Analysis of blood mature BDNF and proBDNF in mood disorders with specific ELISA assays. J. Psychiatr. Res. 2021, 133, 166–173. [Google Scholar] [CrossRef]
- Eisen, R.B.; Perera, S.; Bawor, M.; Dennis, B.B.; El-Sheikh, W.; DeJesus, J.; Rangarajan, S.; Vair, J.; Sholer, H.; Hutchinson, N.; et al. Exploring the Association between Serum BDNF and Attempted Suicide. Sci. Rep. 2016, 6, 25229. [Google Scholar] [CrossRef] [Green Version]
- Popova, N.K.; Naumenko, V.S. Neuronal and behavioral plasticity: The role of serotonin and BDNF systems tandem. Expert Opin. Ther. Targets 2019, 23, 227–239. [Google Scholar] [CrossRef]
- Karege, F.; Vaudan, G.; Schwald, M.; Perroud, N.; La Harpe, R. Neurotrophin levels in postmortem brains of suicide victims and the effects of antemortem diagnosis and psychotropic drugs. Brain Res. Mol. Brain. Res. 2005, 136, 29–37. [Google Scholar] [CrossRef]
Controls | Suicides | p Value | |
---|---|---|---|
Age (years) | 36 (30–47) | 42.27 ± 18.684 | 0.993 |
Gender (male/female) | 12/13 | 21/9 | 0.1 |
TPH2 | 0.17 (0.13–0.22) | 0.27 (0.17–0.41) | 0.003 |
proBDNF | 6490.80 (5006.80–7646.80) | 7834.80 (6666.80–8535.80) | 0.003 |
GDNF | 97.30 (86.38–116.30) | 44.07 (34.15–51.24) | p < 0.001 |
BDNF/proBDNF | 3.50 (2.85–4.18) | 2.56(1.71–3.28) | 0.003 |
BDNF | 21,707.71 ± 3783.93 | 19,690.00 ± 8246.60 | 0.238 |
Trk-b | 5364.99 (4359.29–6676.00) | 5192.00 (4843.91–5760.98) | 0.357 |
Violent Way | Non-Violent Way | ||
---|---|---|---|
Psychiatric | SC | 4 | 0 |
Illness | MDD | 5 | 1 |
Life events | Health Problem | 3 | 1 |
Family Problem | 3 | 0 | |
Social Factor | 5 | 0 | |
Unknow | 6 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Li, S.; Yu, Y.; Hu, J.; Xu, Y. Changes in Plasma TPH2, GDNF, Trk-b, BDNF, and proBDNF in People Who Died by Suicide. Brain Sci. 2023, 13, 1096. https://doi.org/10.3390/brainsci13071096
Liu X, Li S, Yu Y, Hu J, Xu Y. Changes in Plasma TPH2, GDNF, Trk-b, BDNF, and proBDNF in People Who Died by Suicide. Brain Sciences. 2023; 13(7):1096. https://doi.org/10.3390/brainsci13071096
Chicago/Turabian StyleLiu, Xiaoyu, Shangda Li, Yueran Yu, Jianbo Hu, and Yi Xu. 2023. "Changes in Plasma TPH2, GDNF, Trk-b, BDNF, and proBDNF in People Who Died by Suicide" Brain Sciences 13, no. 7: 1096. https://doi.org/10.3390/brainsci13071096
APA StyleLiu, X., Li, S., Yu, Y., Hu, J., & Xu, Y. (2023). Changes in Plasma TPH2, GDNF, Trk-b, BDNF, and proBDNF in People Who Died by Suicide. Brain Sciences, 13(7), 1096. https://doi.org/10.3390/brainsci13071096