The Relationship between Formal Music Training and Conflict Control: An ERP Study
Abstract
:1. Introduction
1.1. Conflict Control and Its Neural Markers
1.2. Music Training and Executive Function
1.3. The Present Study
2. Methods
2.1. Participants
2.2. The Raven Advanced Progressive Matrices
2.3. The Stroop Task
2.4. Statistical Analysis
2.5. Behavioral Analysis
2.6. Eeg Recording and Analysis
3. Results
3.1. Behavioral Results
3.2. ERP Results
3.2.1. N2
3.2.2. P3
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahmad, M.; Rahman, M.F.; Ali, M.; Rahman, F.N.; Al Azad, M.A.S. Effect of Extra Curricular Activity on Student’s Academic Performance. J. Armed Med. Coll. Bangladesh 2019, 11, 41–46. [Google Scholar] [CrossRef]
- Corrigall, K.A.; Schellenberg, E.G. Predicting who takes music lessons: Parent and child characteristics. Front. Psychol. 2015, 6, 282. [Google Scholar] [CrossRef] [PubMed]
- Neves, L.; Correia, A.I.; Castro, S.L.; Martins, D.; Lima, C.F. Does music training enhance auditory and linguistic processing? A systematic review and meta-analysis of behavioral and brain evidence. Neurosci. Biobehav. Rev. 2022, 140, 104777. [Google Scholar] [CrossRef] [PubMed]
- Román-Caballero, R.; Vadillo, M.A.; Trainor, L.J.; Lupiáñez, J. Please don’t stop the music: A meta-analysis of the cognitive and academic benefits of instrumental musical training in childhood and adolescence. Educ. Res. Rev. 2022, 35, 100436. [Google Scholar] [CrossRef]
- Herholz, S.C.; Zatorre, R.J. Musical Training as a Framework for Brain Plasticity: Behavior, Function, and Structure. Neuron 2012, 76, 486–502. [Google Scholar] [CrossRef]
- Bugos, J.A.; Perlstein, W.M.; McCrae, C.S.; Brophy, T.S.; Bedenbaugh, P.H. Individualized Piano Instruction enhances executive functioning and working memory in older adults. Aging Ment. Health 2007, 11, 464–471. [Google Scholar] [CrossRef]
- Diamond, A. Close interrelation of motor development and cognitive development and of the cerebellum and prefrontal cortex. Child. Dev. 2000, 71, 44–56. [Google Scholar] [CrossRef]
- Niklasson, M.; Norlander, T.; Niklasson, I.; Rasmussen, P. Catching-up: Children with developmental coordination disorder compared to healthy children before and after sensorimotor therapy. PLoS ONE 2017, 12, e0186126. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Miao, X.; Yiying, S.; Jia, L. The Neural Mechanism underlying Music Perception: A Meta-analysis of fMRI Studies. Acta Psychol. Sin. 2013, 45, 491–507. [Google Scholar] [CrossRef]
- Slevc, L.R.; Davey, N.S.; Buschkuehl, M.; Jaeggi, S.M. Tuning the mind: Exploring the connections between musical ability and executive functions. Cognition 2016, 152, 199–211. [Google Scholar] [CrossRef] [PubMed]
- Wan, C.Y.; Schlaug, G. Music making as a tool for promoting brain plasticity across the life span. Neuroscientist 2010, 16, 566–577. [Google Scholar] [CrossRef] [PubMed]
- Botvinick, M.M.; Braver, T.S.; Barch, D.M.; Carter, C.S.; Cohen, J.D. Conflict monitoring and cognitive control. Psychol. Rev. 2001, 108, 624–652. [Google Scholar] [CrossRef] [PubMed]
- Kerns, J.G.; Cohen, J.D.; MacDonald, A.W., 3rd; Cho, R.Y.; Stenger, V.A.; Carter, C.S. Anterior cingulate conflict monitoring and adjustments in control. Science 2004, 303, 1023–1026. [Google Scholar] [CrossRef]
- Liu, T.; Wang, D.; Wang, C.; Xiao, T.; Shi, J. The influence of reward anticipation on conflict control in children and adolescents: Evidences from hierarchical drift-diffusion model and event-related potentials. Dev. Cogn. Neurosci. 2022, 55, 101118. [Google Scholar] [CrossRef] [PubMed]
- Luna, B.; Marek, S.; Larsen, B.; Tervo-Clemmens, B.; Chahal, R. An Integrative Model of the Maturation of Cognitive Control. Annu. Rev. Neurosci. 2015, 38, 151–170. [Google Scholar] [CrossRef]
- Larson, M.J.; Clayson, P.E.; Clawson, A. Making sense of all the conflict: A theoretical review and critique of conflict-related ERPs. Int. J. Psychophysiol. 2014, 93, 283–297. [Google Scholar] [CrossRef]
- Nee, D.E.; Wager, T.D.; Jonides, J. Interference resolution: Insights from a meta-analysis of neuroimaging tasks. Cogn. Affect. Behav. Neurosci. 2007, 7, 1–17. [Google Scholar] [CrossRef]
- Sheridan, M.; Kharitonova, M.; Martin, R.E.; Chatterjee, A.; Gabrieli, J.D.E. Neural Substrates of the Development of Cognitive Control in Children Ages 5–10 Years. J. Cogn. Neurosci. 2014, 26, 1840–1850. [Google Scholar] [CrossRef]
- Vo, K.D.; Siqi-Liu, A.; Chaire, A.; Li, S.; Demeter, E.; Egner, T.; Woldorff, M.G. Neural Dynamics of Conflict Control in Working Memory. J. Cogn. Neurosci. 2021, 33, 2079–2092. [Google Scholar] [CrossRef]
- Larson, M.J.; Kaufman, D.A.S.; Perlstein, W.M. Conflict adaptation and cognitive control adjustments following traumatic brain injury. J. Int. Neuropsychol. Soc. 2009, 15, 927–937. [Google Scholar] [CrossRef]
- Duncan, C.C.; Summers, A.C.; Perla, E.J.; Coburn, K.L.; Mirsky, A.F. Evaluation of traumatic brain injury: Brain potentials in diagnosis, function, and prognosis. Int. J. Psychophysiol. 2011, 82, 24–40. [Google Scholar] [CrossRef] [PubMed]
- Scarpina, F.; Tagini, S. The Stroop Color and Word Test. Front. Psychol. 2017, 8, 557. [Google Scholar] [CrossRef] [PubMed]
- Stroop, J.R. Studies of interference in serial verbal reactions. J. Exp. Psychol. 1935, 18, 643–662. [Google Scholar] [CrossRef]
- Jensen, A.R.; Rohwer, W.D., Jr. The Stroop Color-Word Test: A review. Acta Psychol. 1966, 25, 36–93. [Google Scholar] [CrossRef] [PubMed]
- Kane, M.J.; Engle, R.W. Working-memory capacity and the control of attention: The contributions of goal neglect, response competition, and task set to Stroop interference. J. Exp. Psychol. Gen. 2003, 132, 47–70. [Google Scholar] [CrossRef]
- Periáñez, J.A.; Lubrini, G.; García-Gutiérrez, A.; Ríos-Lago, M. Construct Validity of the Stroop Color-Word Test: Influence of Speed of Visual Search, Verbal Fluency, Working Memory, Cognitive Flexibility, and Conflict Monitoring. Arch. Clin. Neuropsychol. 2021, 36, 99–111. [Google Scholar] [CrossRef]
- West, R. Neural correlates of cognitive control and conflict detection in the Stroop and digit-location tasks. Neuropsychologia 2003, 41, 1122–1135. [Google Scholar] [CrossRef] [PubMed]
- Tillman, C.M.; Wiens, S. Behavioral and ERP indices of response conflict in Stroop and flanker tasks. Psychophysiology 2011, 48, 1405–1411. [Google Scholar] [CrossRef]
- Cheng, C.-H.; Tsai, H.-Y.; Cheng, H.-N. The effect of age on N2 and P3 components: A meta-analysis of Go/Nogo tasks. Brain Cogn. 2019, 135, 103574. [Google Scholar] [CrossRef]
- Sur, S.; Sinha, V.K. Event-related potential: An overview. Ind. Psychiatry J. 2009, 18, 70–73. [Google Scholar] [CrossRef]
- Blackwood, D.H.; Muir, W.J. Cognitive brain potentials and their application. Br. J. Psychiatry Suppl. 1990, 157, 96–101. [Google Scholar] [CrossRef]
- Barry, R.J.; Johnstone, S.J.; Clarke, A.R. A review of electrophysiology in attention-deficit/hyperactivity disorder: II. Event-related potentials. Clin. Neurophysiol. 2003, 114, 184–198. [Google Scholar] [CrossRef]
- Polich, J. Updating P300: An integrative theory of P3a and P3b. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 2007, 118, 2128–2148. [Google Scholar] [CrossRef]
- Polich, J. Neuropsychology of P300. In The Oxford Handbook of Event-Related Potential Components; Kappenman, E.S., Luck, S.J., Eds.; Oxford University Press: Oxford, UK, 2011; p. 2. [Google Scholar]
- Folstein, J.R.; Van Petten, C. Influence of cognitive control and mismatch on the N2 component of the ERP: A review. Psychophysiology 2008, 45, 152–170. [Google Scholar] [CrossRef] [PubMed]
- Clayson, P.E.; Larson, M.J. Psychometric properties of conflict monitoring and conflict adaptation indices: Response time and conflict N2 event-related potentials. Psychophysiology 2013, 50, 1209–1219. [Google Scholar] [CrossRef] [PubMed]
- Coffey, C.E.; Wilkinson, W.E.; Parashos, L.; Soady, S.A.R.; Sullivan, R.J.; Patterson, L.J.; Figiel, G.S.; Webb, M.C.; Spritzer, C.E.; Djang, W.T. Quantitative cerebral anatomy of the aging human brain. A cross‐sectional study using magnetic resonance imaging. Neurology 1992, 42, 527. [Google Scholar] [CrossRef]
- Tan, Y.-L.; Yuan, Y.; Tian, L. Microglial regional heterogeneity and its role in the brain. Mol. Psychiatr. 2020, 25, 351–367. [Google Scholar] [CrossRef]
- Batista-García-Ramó, K.; Fernández-Verdecia, C.I. What We Know About the Brain Structure-Function Relationship. Behav. Sci. 2018, 8, 39. [Google Scholar] [CrossRef]
- Kanwisher, N. Functional specificity in the human brain: A window into the functional architecture of the mind. Proc. Natl. Acad. Sci. USA 2010, 107, 11163–11170. [Google Scholar] [CrossRef]
- Bekker, E.M.; Kenemans, J.L.; Verbaten, M.N. Electrophysiological correlates of attention, inhibition, sensitivity and bias in a continuous performance task. Clin. Neurophysiol. 2004, 115, 2001–2013. [Google Scholar] [CrossRef] [PubMed]
- Brydges, C.; Fox, A.; Reid, C.; Anderson, M. Predictive validity of the N2 and P3 ERP components to executive functioning in children: A latent-variable analysis. Front. Hum. Neurosci. 2014, 8, 80. [Google Scholar] [CrossRef] [PubMed]
- Enriquez-Geppert, S.; Barceló, F. Multisubject Decomposition of Event-related Positivities in Cognitive Control: Tackling Age-related Changes in Reactive Control. Brain Topogr. 2018, 31, 17–34. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Quan, H.; Song, S.; Zhang, X.; Yang, C.; Chen, H. Decreased Conflict Control in Overweight Chinese Females: Behavioral and Event-Related Potentials Evidence. Nutrients 2019, 11, 1450. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, L.; Jackson, T.; Wang, J.; Yang, R.; Chen, H. Effects of negative mood state on event-related potentials of restrained eating subgroups during an inhibitory control task. Behav. Brain Res. 2020, 377, 112249. [Google Scholar] [CrossRef]
- Donkers, F.C.L.; van Boxtel, G.J.M. The N2 in go/no-go tasks reflects conflict monitoring not response inhibition. Brain Cogn. 2004, 56, 165–176. [Google Scholar] [CrossRef]
- Hämmerer, D.; Li, S.C.; Müller, V.; Lindenberger, U. An electrophysiological study of response conflict processing across the lifespan: Assessing the roles of conflict monitoring, cue utilization, response anticipation, and response suppression. Neuropsychologia 2010, 48, 3305–3316. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Zhang, Q.; Chen, A.; Li, H.; Wang, Q.; Zhuang, Z.; Jia, S. Are we sensitive to valence differences in emotionally negative stimuli? Electrophysiological evidence from an ERP study. Neuropsychologia 2007, 45, 2764–2771. [Google Scholar] [CrossRef]
- Gajewski, P.D.; Ferdinand, N.K.; Kray, J.; Falkenstein, M. Understanding sources of adult age differences in task switching: Evidence from behavioral and ERP studies. Neurosci. Biobehav. Rev. 2018, 92, 255–275. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Liu, Y.; Du, J.; Chen, H. Effects of food exposure on food-related inhibitory control in restrained eaters: An ERP study. Neurosci. Lett. 2018, 672, 130–135. [Google Scholar] [CrossRef]
- Kok, A. On the utility of P3 amplitude as a measure of processing capacity. Psychophysiology 2001, 38, 557–577. [Google Scholar] [CrossRef]
- Elliott, R. Executive functions and their disorders. Br. Med. Bull. 2003, 65, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Blair, C.; Zelazo, P.D.; Greenberg, M.T. The Measurement of Executive Function in Early Childhood. Dev. Neuropsychol. 2005, 28, 561–571. [Google Scholar] [CrossRef]
- Wang, X.; Ossher, L.; Reuter-Lorenz, P.A. Examining the relationship between skilled music training and attention. Conscious. Cogn. 2015, 36, 169–179. [Google Scholar] [CrossRef] [PubMed]
- Hennessy, S.L.; Sachs, M.E.; Ilari, B.; Habibi, A. Effects of Music Training on Inhibitory Control and Associated Neural Networks in School-Aged Children: A Longitudinal Study. Front. Neurosci. 2019, 13, 1080. [Google Scholar] [CrossRef]
- Moreno, S.; Bialystok, E.; Barac, R.; Schellenberg, E.G.; Cepeda, N.J.; Chau, T. Short-term music training enhances verbal intelligence and executive function. Psychol. Sci. 2011, 22, 1425–1433. [Google Scholar] [CrossRef] [PubMed]
- Bugos, J.A. The Benefits of Music Instruction on Processing Speed, Verbal Fluency, and Cognitive Control in Aging. Music Educ. Res. Int. 2010, 4, 1–9. [Google Scholar]
- Seinfeld, S.; Figueroa, H.; Ortiz-Gil, J.; Sanchez-Vives, M. Effects of music learning and piano practice on cognitive function, mood and quality of life in older adults. Front. Psychol. 2013, 4, 810. [Google Scholar] [CrossRef] [PubMed]
- Bialystok, E.; DePape, A.-M. Musical expertise, bilingualism, and executive functioning. J. Exp. Psychol. Hum. Percept. Perform. 2009, 35, 565–574. [Google Scholar] [CrossRef] [PubMed]
- Chen Yahong, W.J. The effect of music training on pre-attentive processing of the brain. Adv. Psychol. Sci. 2019, 27, 1036–1043. [Google Scholar] [CrossRef]
- Travis, F.; Harung, H.S.; Lagrosen, Y. Moral development, executive functioning, peak experiences and brain patterns in professional and amateur classical musicians: Interpreted in light of a Unified Theory of Performance. Conscious. Cogn. 2011, 20, 1256–1264. [Google Scholar] [CrossRef] [PubMed]
- Zuk, J.; Benjamin, C.; Kenyon, A.; Gaab, N. Behavioral and neural correlates of executive functioning in musicians and non-musicians. PLoS ONE 2014, 9, e99868. [Google Scholar] [CrossRef] [PubMed]
- Strong, J.V. Music experience predicts episodic memory performance in older adult instrumental musicians. Brain Cogn. 2022, 161, 105883. [Google Scholar] [CrossRef] [PubMed]
- Janus, M.; Lee, Y.; Moreno, S.; Bialystok, E. Effects of short-term music and second-language training on executive control. J. Exp. Child Psychol. 2016, 144, 84–97. [Google Scholar] [CrossRef] [PubMed]
- Bilker, W.B.; Hansen, J.A.; Brensinger, C.M.; Richard, J.; Gur, R.E.; Gur, R.C. Development of abbreviated nine-item forms of the Raven’s standard progressive matrices test. Assessment 2012, 19, 354–369. [Google Scholar] [CrossRef] [PubMed]
- Langener, A.M.; Kramer, A.-W.; van den Bos, W.; Huizenga, H.M. A shortened version of Raven’s standard progressive matrices for children and adolescents. Br. J. Dev. Psychol. 2022, 40, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Delorme, A.; Makeig, S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 2004, 134, 9–21. [Google Scholar] [CrossRef]
- Braboszcz, C.; Delorme, A. Lost in thoughts: Neural markers of low alertness during mind wandering. Neuroimage 2011, 54, 3040–3047. [Google Scholar] [CrossRef] [PubMed]
- Degé, F.; Kubicek, C.; Schwarzer, G. Music Lessons and Intelligence: A Relation Mediated by Executive Functions. Music Percept. 2011, 29, 195–201. [Google Scholar] [CrossRef]
- Schellenberg, E.G. Examining the association between music lessons and intelligence. Br. J. Psychol. 2011, 102, 283–302. [Google Scholar] [CrossRef]
- Yoo, J.; Bidelman, G.M. Linguistic, perceptual, and cognitive factors underlying musicians’ benefits in noise-degraded speech perception. Hear. Res. 2019, 377, 189–195. [Google Scholar] [CrossRef]
- Franklin, M.S.; Sledge Moore, K.; Yip, C.-Y.; Jonides, J.; Rattray, K.; Moher, J. The effects of musical training on verbal memory. Psychol. Music 2008, 36, 353–365. [Google Scholar] [CrossRef]
- Slater, J.; Ashley, R.; Tierney, A.; Kraus, N. Got Rhythm? Better Inhibitory Control Is Linked with More Consistent Drumming and Enhanced Neural Tracking of the Musical Beat in Adult Percussionists and Nonpercussionists. J. Cogn. Neurosci. 2018, 30, 14–24. [Google Scholar] [CrossRef]
- Chen, J.; Zhou, Y.; Chen, J. The relationship between musical training and inhibitory control: An ERPs study. Acta Psychol. Sin. 2020, 52, 1365. [Google Scholar] [CrossRef]
- Damen, T.G.E.; Strick, M.; Taris, T.W.; Aarts, H. When conflict influences liking: The case of the Stroop task. PLoS ONE 2018, 13, e0199700. [Google Scholar] [CrossRef] [PubMed]
- Huster, R.J.; Enriquez-Geppert, S.; Lavallee, C.F.; Falkenstein, M.; Herrmann, C.S. Electroencephalography of response inhibition tasks: Functional networks and cognitive contributions. Int. J. Psychophysiol. 2013, 87, 217–233. [Google Scholar] [CrossRef]
- Nieuwenhuis, S.; Yeung, N.; Van Den Wildenberg, W.; Ridderinkhof, K.R. Electrophysiological correlates of anterior cingulate function in a go/no-go task: Effects of response conflict and trial type frequency. Cogn. Affect. Behav. Neurosci. 2003, 3, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Yeung, N.; Botvinick, M.M.; Cohen, J.D. The neural basis of error detection: Conflict monitoring and the error-related negativity. Psychol. Rev. 2004, 111, 931–959. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Liu, Y.; Leng, X.; Han, J.; Xia, F.; Chen, H. Impact of Chronic Stress on Attention Control: Evidence from Behavioral and Event-Related Potential Analyses. Neurosci. Bull. 2020, 36, 1395–1410. [Google Scholar] [CrossRef]
- Wang, W.; Qi, M.; Gao, H. An ERP investigation of the working memory stroop effect. Neuropsychologia 2021, 152, 107752. [Google Scholar] [CrossRef]
- Moreno, S.; Wodniecka, Z.; Tays, W.; Alain, C.; Bialystok, E. Inhibitory Control in Bilinguals and Musicians: Event Related Potential (ERP) Evidence for Experience-Specific Effects. PLoS ONE 2014, 9, e94169. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Lv, J.; Lan, F.; Zhang, L. Emotion regulation strategy of self-focused and situation-focused reappraisal and their impact on subsequent cognitive control. Acta Psychol. Sin. 2020, 52, 1393. [Google Scholar] [CrossRef]
- D’Souza, A.A.; Moradzadeh, L.; Wiseheart, M. Musical training, bilingualism, and executive function: Working memory and inhibitory control. Cogn. Res. Princ. Implic. 2018, 3, 11. [Google Scholar] [CrossRef] [PubMed]
- Benikos, N.; Johnstone, S.J.; Roodenrys, S.J. Varying task difficulty in the Go/Nogo task: The effects of inhibitory control, arousal, and perceived effort on ERP components. Int. J. Psychophysiol. 2013, 87, 262–272. [Google Scholar] [CrossRef] [PubMed]
- Harper, J.; Malone, S.M.; Bernat, E.M. Theta and delta band activity explain N2 and P3 ERP component activity in a go/no-go task. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 2014, 125, 124–132. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-X.; Luo, Y.-J. Temporal course of emotional negativity bias: An ERP study. Neurosci. Lett. 2006, 398, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Ito, T.A.; Larsen, J.T.; Smith, N.K.; Cacioppo, J.T. Negative information weighs more heavily on the brain: The negativity bias in evaluative categorizations. J. Pers. Soc. Psychol. 1998, 75, 887–900. [Google Scholar] [CrossRef] [PubMed]
- Corrigall, K.; Schellenberg, E.G.; Misura, N. Music Training, Cognition, and Personality. Front. Psychol. 2013, 4, 222. [Google Scholar] [CrossRef]
- Howe, M.J.; Davidson, J.W.; Sloboda, J.A. Innate talents: Reality or myth? Behav. Brain Sci. 1998, 21, 399–407. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, J.; Pang, Y.; Liu, Y.; Jing, Y.; Li, J.; Mi, R.; Zheng, M. The Relationship between Formal Music Training and Conflict Control: An ERP Study. Brain Sci. 2023, 13, 723. https://doi.org/10.3390/brainsci13050723
Hao J, Pang Y, Liu Y, Jing Y, Li J, Mi R, Zheng M. The Relationship between Formal Music Training and Conflict Control: An ERP Study. Brain Sciences. 2023; 13(5):723. https://doi.org/10.3390/brainsci13050723
Chicago/Turabian StyleHao, Jiayi, Yazhi Pang, Yong Liu, Yuanluo Jing, Jianbo Li, Ruochuan Mi, and Maoping Zheng. 2023. "The Relationship between Formal Music Training and Conflict Control: An ERP Study" Brain Sciences 13, no. 5: 723. https://doi.org/10.3390/brainsci13050723
APA StyleHao, J., Pang, Y., Liu, Y., Jing, Y., Li, J., Mi, R., & Zheng, M. (2023). The Relationship between Formal Music Training and Conflict Control: An ERP Study. Brain Sciences, 13(5), 723. https://doi.org/10.3390/brainsci13050723