Alterations of Amphetamine Reward by Prior Nicotine and Alcohol Treatment: The Role of Age and Dopamine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Chemicals and Reagents
2.3. Experimental Design and Procedures
2.3.1. Place Conditioning Paradigm
2.3.2. Western Blot Analysis
2.4. Statistical Analyses
3. Results
3.1. Amphetamine Induced a Comparable CPP Response under a Drugged State in Control Adolescent and Adult Mice
3.2. Prior Nicotine and Alcohol Conditioning Increased the Rewarding Action of Acute Amphetamine under a Drugged State in Adult Compared to Adolescent Mice
3.3. The Expression of DAT and D1R Was Higher with a Concomitant Decrease in D2R in Adults Compared to Adolescent Mice with Prior Nicotine and Alcohol Exposure
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bechtholt, A.J.; Mark, G.P. Enhancement of cocaine-seeking behavior by repeated nicotine exposure in rats. Psychopharmacology 2002, 162, 178–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DiFranza, J.R.; Guerrera, M.P. Alcoholism and smoking. J. Stud. Alcohol 1990, 51, 5–130. [Google Scholar] [CrossRef] [PubMed]
- Horger, B.A.; Giles, M.K.; Schenk, S. Preexposure to amphetamine and nicotine predisposes rats to self-administer a low dose of cocaine. Psychopharmacology 1992, 107, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Hutchison, M.A.; Riley, A.L. Adolescent exposure to nicotine alters the aversive effects of cocaine in adult rats. Neurotoxicol. Teratol. 2008, 30, 404–411. [Google Scholar] [CrossRef] [PubMed]
- Kandel, D.; Kandel, E. The Gateway Hypothesis of substance abuse: Developmental, biological and societal perspectives. ACTA Paediatr. 2014, 104, 130–137. [Google Scholar] [CrossRef]
- Kandel, E.R.; Kandel, D.B. A Molecular Basis for Nicotine as a Gateway Drug. N. Engl. J. Med. 2014, 371, 932–943. [Google Scholar] [CrossRef] [Green Version]
- Kelley, B.M.; Rowan, J.D. Long-term, low-level adolescent nicotine exposure produces dose-dependent changes in cocaine sensitivity and reward in adult mice. Int. J. Dev. Neurosci. 2004, 22, 339–348. [Google Scholar] [CrossRef]
- Kouri, E.M.; Stull, M.; Lukas, S.E. Nicotine alters some of cocaine’s subjective effects in the absence of physiological or pharmacokinetic changes. Pharm. Biochem. Behav. 2001, 69, 209–217. [Google Scholar] [CrossRef]
- Levine, A.; Huang, Y.; Drisaldi, B.; Griffin, E.A.; Pollak, D.D.; Xu, S.; Yin, D.; Schaffran, C.; Kandel, D.B.; Kandel, E.R. Molecular Mechanism for a Gateway Drug: Epigenetic Changes Initiated by Nicotine Prime Gene Expression by Cocaine. Sci. Transl. Med. 2011, 3, 107ra109. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Bu, Q.; Chen, B.; Shao, X.; Hu, Z.; Deng, P.; Lv, L.; Deng, Y.; Zhu, R.; Li, Y.; et al. Mechanisms of Metabonomic for a Gateway Drug: Nicotine Priming Enhances Behavioral Response to Cocaine with Modification in Energy Metabolism and Neurotransmitter Level. PLoS ONE 2014, 9, e87040. [Google Scholar] [CrossRef] [PubMed]
- McQuown, S.C.; Belluzzi, J.D.; Leslie, F.M. Low dose nicotine treatment during early adolescence increases subsequent cocaine reward. Neurotoxicol. Teratol. 2007, 29, 66–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McQuown, S.C.; Dao, J.M.; Belluzzi, J.D.; Leslie, F.M. Age-dependent effects of low-dose nicotine treatment on cocaine-induced behavioral plasticity in rats. Psychopharmacology 2009, 207, 143–152. [Google Scholar] [CrossRef] [Green Version]
- Meliska, C.J.; Bartke, A.; Vandergriff, J.L.; Jensen, R.A. Ethanol and nicotine consumption and preference in transgenic mice overexpressing the bovine growth hormone gene. Pharmacol. Biochem. Behav. 1995, 50, 563–570. [Google Scholar]
- Natividad, L.A.; Tejeda, H.A.; Torres, O.V.; O’Dell, L.E. Nicotine withdrawal produces a decrease in extracellular levels of dopamine in the nucleus accumbens that is lower in adolescent versus adult male rats. Synapse 2010, 64, 136–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rinker, J.A.; Hutchison, M.A.; Chen, S.A.; Thorsell, A.; Heilig, M.; Riley, A.L. Exposure to nicotine during periadolescence or early adulthood alters aversive and physiological effects induced by ethanol. Pharmacol. Biochem. Behav. 2011, 99, 7–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenberg, J.M. A molecular basis for nicotine as a gateway drug. N. Engl. J. Med. 2014, 371, 2038. [Google Scholar] [CrossRef] [Green Version]
- Schindler, A.G.; Messinger, D.I.; Smith, J.S.; Shankar, H.; Gustin, R.M.; Schattauer, S.S.; Lemos, J.C.; Chavkin, N.W.; Hagan, C.E.; Neumaier, J.F.; et al. Stress Produces Aversion and Potentiates Cocaine Reward by Releasing Endogenous Dynorphins in the Ventral Striatum to Locally Stimulate Serotonin Reuptake. J. Neurosci. 2012, 32, 17582–17596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider, T.; Bizarro, L.; Asherson, P.J.E.; Stolerman, I.P. Hyperactivity, increased nicotine consumption and impaired performance in the five-choice serial reaction time task in adolescent rats prenatally exposed to nicotine. Psychopharmacology 2012, 223, 401–415. [Google Scholar] [CrossRef] [Green Version]
- Gossop, M.; Manning, V.; Ridge, G. Concurrent use and order of use of cocaine and alcohol: Behavioural differences between users of crack cocaine and cocaine powder. Addiction 2006, 101, 1292–1298. [Google Scholar] [CrossRef]
- Marks, K.R.; Pike, E.; Stoops, W.W.; Rush, C.R. Alcohol Administration Increases Cocaine Craving but Not Cocaine Cue Attentional Bias. Alcohol. Clin. Exp. Res. 2015, 39, 1823–1831. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, P.; Calliari, A.; Genovese, P.; Scorza, C.; Pautassi, R.M. Amphetamine, but not methylphenidate, increases ethanol intake in adolescent male, but not in female, rats. Brain Behav. 2018, 8, e00939. [Google Scholar] [CrossRef]
- Stinson, F.S.; Grant, B.F.; Dawson, D.A.; Ruan, W.J.; Huang, B.; Saha, T. Comorbidity between DSM-IV alcohol and specific drug use disorders in the United States: Results from the National Epidemiologic Survey on Alcohol and Related Conditions. Drug Alcohol Depend. 2005, 80, 105–116. [Google Scholar] [CrossRef]
- Storey, G.P.; Gonzalez-Fernandez, G.; Bamford, I.J.; Hur, M.; McKinley, J.W.; Heimbigner, L.; Minasyan, A.; Walwyn, W.M.; Bamford, N.S. Nicotine Modifies Corticostriatal Plasticity and Amphetamine Rewarding Behaviors in Mice. Neuron 2016, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baker, E.P.; Magnuson, E.C.; Dahly, A.M.; Siegel, J.A. The effects of enriched environment on the behavioral and corticosterone response to methamphetamine in adolescent and adult mice. Dev. Psychobiol. 2018, 60, 664–673. [Google Scholar] [CrossRef]
- Baker, L.K.; Mao, D.; Chi, H.; Govind, A.P.; Vallejo, Y.F.; Iacoviello, M.; Herrera, S.; Cortright, J.J.; Green, W.N.; McGehee, D.S.; et al. Intermittent nicotine exposure upregulates nAChRs in VTA dopamine neurons and sensitises locomotor responding to the drug. Eur. J. Neurosci. 2013, 37, 1004–1011. [Google Scholar] [CrossRef] [PubMed]
- Best, D.; Rawaf, S.; Rowley, J.; Floyd, K.; Manning, V.; Strang, J. Drinking and smoking as concurrent predictors of illicit drug use and positive drug attitudes in adolescents. Drug Alcohol Depend. 2000, 60, 319–321. [Google Scholar] [CrossRef]
- Businelle, M.S.; Lam, C.Y.; Kendzor, D.E.; Cofta-Woerpel, L.; McClure, J.B.; Cinciripini, P.M.; Wetter, D.W. Alcohol consumption and urges to smoke among women during a smoking cessation attempt. Exp. Clin. Psychopharmacol. 2013, 21, 29–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carmody, T.P.; Brischetto, C.S.; Matarazzo, J.D.; O’Donnell, R.P.; Connor, W.E. Co-occurrent use of cigarettes, alcohol, and coffee in healthy, community-living men and women. Health psychology. Off. J. Div. Health Psychol. Am. Psychol. Assoc. 1985, 4, 35–323. [Google Scholar]
- Lisha, N.E.; Carmody, T.P.; Humfleet, G.L.; Delucchi, K.L. Reciprocal effects of alcohol and nicotine in smoking cessation treatment studies. Addict. Behav. 2014, 39, 637–643. [Google Scholar] [CrossRef] [Green Version]
- McKee, S.A.; Sinha, R.; Weinberger, A.H.; Sofuoglu, M.; Harrison, E.L.; Lavery, M.; Wanzer, J. Stress decreases the ability to resist smoking and potentiates smoking intensity and reward. J. Psychopharmacol. 2010, 25, 490–502. [Google Scholar] [CrossRef] [Green Version]
- Rimm, E.B.; Chan, J.; Stampfer, M.J.; Colditz, G.A.; Willett, W.C. Prospective study of cigarette smoking, alcohol use, and the risk of diabetes in men. BMJ 1995, 310, 555–559. [Google Scholar] [CrossRef] [Green Version]
- Romberger, D.J.; Grant, K. Alcohol consumption and smoking status: The role of smoking cessation. Biomed. Pharmacother. 2004, 58, 77–83. [Google Scholar] [CrossRef]
- Torabi, M.R.; Bailey, W.J.; Majd-Jabbari, M. Cigarette Smoking as a Predictor of Alcohol and Other Drug Use by Children and Adolescents: Evidence of the “Gateway Drug Effect”. J. Sch. Health 1993, 63, 302–306. [Google Scholar] [CrossRef] [PubMed]
- York, J.L.; Hirsch, J.A. Drinking Patterns and Health Status in Smoking and Nonsmoking Alcoholics. Alcohol. Clin. Exp. Res. 1995, 19, 666–673. [Google Scholar] [CrossRef] [PubMed]
- Schochet, T.L.; Kelley, A.E.; Landry, C.F. Differential behavioral effects of nicotine exposure in adolescent and adult rats. Psychopharmacology 2004, 175, 265–273. [Google Scholar] [CrossRef] [PubMed]
- O’Dell, L.E.; Torres, O.V.; Natividad, L.A.; Tejeda, H.A. Adolescent nicotine exposure produces less affective measures of withdrawal relative to adult nicotine exposure in male rats. Neurotoxicol. Teratol. 2007, 29, 17–22. [Google Scholar] [CrossRef] [Green Version]
- Pipkin, J.A.; Kaplan, G.J.; Plant, C.P.; Eaton, S.E.; Gil, S.M.; Zavala, A.R.; Crawford, C.A. Nicotine exposure beginning in adolescence enhances the acquisition of methamphetamine self-administration, but not methamphetamine-primed reinstatement in male rats. Drug Alcohol Depend. 2014, 142, 341–344. [Google Scholar] [CrossRef] [Green Version]
- Fleckenstein, A.E.; Volz, T.J.; Riddle, E.L.; Gibb, J.W.; Hanson, G.R. New Insights into the Mechanism of Action of Amphetamines. Annu. Rev. Pharmacol. Toxicol. 2007, 47, 681–698. [Google Scholar] [CrossRef]
- Sulzer, D. How Addictive Drugs Disrupt Presynaptic Dopamine Neurotransmission. Neuron 2011, 69, 628–649. [Google Scholar] [CrossRef] [Green Version]
- Calipari, E.S.; Ferris, M.J.; Salahpour, A.; Caron, M.G.; Jones, S.R. Methylphenidate amplifies the potency and reinforcing effects of amphetamines by increasing dopamine transporter expression. Nat. Commun. 2013, 4, 2720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sulzer, D.; Sonders, M.S.; Poulsen, N.W.; Galli, A. Mechanisms of neurotransmitter release by amphetamines: A review. Prog. Neurobiol. 2005, 75, 406–433. [Google Scholar] [CrossRef] [PubMed]
- Cagniard, B.; Sotnikova, T.D.; Gainetdinov, R.R.; Zhuang, X. The Dopamine Transporter Expression Level Differentially Affects Responses to Cocaine and Amphetamine. J. Neurogenet. 2014, 28, 112–121. [Google Scholar] [CrossRef]
- Salahpour, A.; Ramsey, A.J.; Medvedev, I.O.; Kile, B.; Sotnikova, T.D.; Holmstrand, E.; Ghisi, V.; Nicholls, P.J.; Wong, L.; Murphy, K.; et al. Increased Amphetamine-Induced Hyperactivity and Reward in Mice Overexpressing the Dopamine Transporter. The National Academy of Sciences. Proc. Natl. Acad. Sci. USA 2008, 105, 4405–4410. [Google Scholar] [CrossRef] [Green Version]
- Bardo, M.; Bevins, R. Conditioned place preference: What does it add to our preclinical understanding of drug reward? Psychopharmacology 2000, 153, 31–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, K.; Tseng, A.; Marquez, P.; Hamid, A.; Lutfy, K. The role of endogenous dynorphin in ethanol-induced state-dependent CPP. Behav. Brain Res. 2012, 227, 58–63. [Google Scholar] [CrossRef] [Green Version]
- Tseng, A.; Nguyen, K.; Hamid, A.; Garg, M.; Marquez, P.; Lutfy, K. The role of endogenous beta-endorphin and enkephalins in ethanol reward. Neuropharmacology 2013, 73, 290–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tseng, A.; Singh, P.; Marquez, P.; Hamid, A.; Lutfy, K. The role of endogenous pituitary adenylyl cyclase activating polypeptide (PACAP) in nicotine self-administration, reward and aversion. Trends Neuroendocrinol. 2019, 181, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Ehrlich, M.E.; Sommer, J.; Canas, E.; Unterwald, E.M. Periadolescent mice show enhanced DeltaFosB upregulation in response to cocaine and amphetamine. J. Neurosci. 2002, 22, 9155–9159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Good, R.L.; Liang, L.-P.; Patel, M.; Radcliffe, R.A. Mouse strain- and age-dependent effects of binge methamphetamine on dopaminergic signaling. NeuroToxicology 2011, 32, 751–759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kandel, D.B.; Yamaguchi, K.; Chen, K. Stages of progression in drug involvement from adolescence to adulthood: Further evidence for the gateway theory. J. Stud. Alcohol. Drugs 1992, 53, 447–457. [Google Scholar] [CrossRef] [PubMed]
- Kelley, B.M.; Middaugh, L.D. Periadolescent Nicotine Exposure Reduces Cocaine Reward in Adult Mice. J. Addict. Dis. 1999, 18, 27–39. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.W.; Stolerman, I.P. Recognising Nicotine: The Neurobiological Basis of Nicotine Discrimination. Snake Venoms 2009, 192, 295–333. [Google Scholar] [CrossRef]
- Zernig, G.; Ahmed, S.H.; Cardinal, R.N.; Morgan, D.; Acquas, E.; Foltin, R.W.; Vezina, P.; Negus, S.S.; Crespo, J.A.; Stöckl, P.; et al. Explaining the Escalation of Drug Use in Substance Dependence: Models and Appropriate Animal Laboratory Tests. Pharmacology 2007, 80, 65–119. [Google Scholar] [CrossRef] [PubMed]
- Joshua, M.; Adler, A.; Mitelman, R.; Vaadia, E.; Bergman, H. Midbrain Dopaminergic Neurons and Striatal Cholinergic Interneurons Encode the Difference between Reward and Aversive Events at Different Epochs of Probabilistic Classical Conditioning Trials. J. Neurosci. 2008, 28, 11673–11684. [Google Scholar] [CrossRef] [Green Version]
- Koob, G.F. Neurobiology of Addiction: Toward the Development of New Therapies. Ann. N. Y. Acad. Sci. 2006, 909, 170–185. [Google Scholar] [CrossRef] [PubMed]
- Koob, G.F.; Caine, S.; Parsons, L.; Markou, A.; Weiss, F. Opponent Process Model and Psychostimulant Addiction. Pharmacol. Biochem. Behav. 1997, 57, 513–521. [Google Scholar] [CrossRef]
- Oberling, P.; Rocha, B.; Di Scala, G.; Sandner, G. Evidence for state-dependent retrieval in conditioned place aversion. Behav. Neural Biol. 1993, 60, 27–32. [Google Scholar] [CrossRef]
- Self, D.W.; Choi, K.-H. Extinction-induced Neuroplasticity Attenuates Stress-induced Cocaine Seeking: A State-dependent Learning Hypothesis. Stress 2004, 7, 145–155. [Google Scholar] [CrossRef]
- Pontieri, F.E.; Tanda, G.; Orzi, F.; Di Chiara, G. Effects of nicotine on the nucleus accumbens and similarity to those of addictive drugs. Nat. Cell Biol. 1996, 382, 255–257. [Google Scholar] [CrossRef]
- Teicher, M.H.; Barber, N.I.; Gelbard, H.A.; Gallitano, A.L.; Campbell, A.; Marsh, E.; Baldessarini, R.J. Developmental Differences in Acute Nigrostriatal and Mesocorticolimbic System Response to Haloperidol. Neuropsychopharmacology 1993, 9, 147–156. [Google Scholar] [CrossRef]
- Stamford, J.A. Development and Ageing of the Rat Nigrostriatal Dopamine System Studied with Fast Cyclic Voltammetry. J. Neurochem. 1989, 52, 1582–1589. [Google Scholar] [CrossRef] [PubMed]
- Marusich, J.A.; Darna, M.; Wilson, A.G.; Denehy, E.D.; Ebben, A.; Deaciuc, A.G.; Dwoskin, L.P.; Bardo, M.T.; Lefever, T.W.; Wiley, J.L.; et al. Tobacco’s minor alkaloids: Effects on place conditioning and nucleus accumbens dopamine release in adult and adolescent rats. Eur. J. Pharmacol. 2017, 814, 196–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carrara-Nascimento, P.F.; Hoffmann, L.B.; Flório, J.C.; Planeta, C.S.; Camarini, R. Effects of Ethanol Exposure During Adolescence or Adulthood on Locomotor Sensitization and Dopamine Levels in the Reward System. Front. Behav. Neurosci. 2020, 14, 31. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stojakovic, A.; Ahmad, S.M.; Lutfy, K. Alterations of Amphetamine Reward by Prior Nicotine and Alcohol Treatment: The Role of Age and Dopamine. Brain Sci. 2021, 11, 420. https://doi.org/10.3390/brainsci11040420
Stojakovic A, Ahmad SM, Lutfy K. Alterations of Amphetamine Reward by Prior Nicotine and Alcohol Treatment: The Role of Age and Dopamine. Brain Sciences. 2021; 11(4):420. https://doi.org/10.3390/brainsci11040420
Chicago/Turabian StyleStojakovic, Andrea, Syed Muzzammil Ahmad, and Kabirullah Lutfy. 2021. "Alterations of Amphetamine Reward by Prior Nicotine and Alcohol Treatment: The Role of Age and Dopamine" Brain Sciences 11, no. 4: 420. https://doi.org/10.3390/brainsci11040420
APA StyleStojakovic, A., Ahmad, S. M., & Lutfy, K. (2021). Alterations of Amphetamine Reward by Prior Nicotine and Alcohol Treatment: The Role of Age and Dopamine. Brain Sciences, 11(4), 420. https://doi.org/10.3390/brainsci11040420