Next Issue
Volume 2, March
 
 

Brain Sci., Volume 1, Issue 1 (December 2011) – 2 articles , Pages 1-15

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
1704 KiB  
Article
Dysfunctional Incidental Olfaction in Mild Cognitive Impairment (MCI): An Electroencephalography (EEG) Study
by Peter Walla, Cornelia Duregger, Lüder Deecke and Peter Dal-Bianco
Brain Sci. 2011, 1(1), 3-15; https://doi.org/10.3390/brainsci1010003 - 28 Oct 2011
Cited by 5 | Viewed by 8481
Abstract
Our study provides evidence that Mild Cognitive Impairment (MCI) is associated with olfactory dysfunction on both conscious and non-conscious levels. MCI patients and age-matched controls underwent a face processing task during which sympathy decisions had to be made via button presses. Incidentally, some [...] Read more.
Our study provides evidence that Mild Cognitive Impairment (MCI) is associated with olfactory dysfunction on both conscious and non-conscious levels. MCI patients and age-matched controls underwent a face processing task during which sympathy decisions had to be made via button presses. Incidentally, some of the faces were associated with a simultaneously presented odour. Although attention was paid to faces, brain activities were analysed with respect to odour versus no-odour conditions. Behavioural differences were found related to overall face recognition performance, but these were not statistically significant. However, odour-related neurophysiology differed between both groups. Normal controls demonstrated brain activity differences between odour and no-odour conditions that resemble difference activity patterns in healthy young participants as described in a previous magnetoencephalography (MEG) study [1]. They showed odour-related activity patterns between about 160 ms and 320 ms after stimulus onset and between about 640 ms and 720 ms. On the other hand, the patient group did not show any such difference activities. Based on previous research we interpret the early odour-related brain activity pattern in controls as being associated with subliminal olfaction and the later activity pattern with conscious olfaction. None of these were found in MCI patients, although it has to be emphasised that our sample size was rather small. We confirm previous findings about olfactory related dysfunction in patients with MCI and conclude from our findings that even subliminal odour-related information processing is impaired. Full article
Show Figures

Graphical abstract

102 KiB  
Editorial
Brain Sciences – An Open Access Journal
by Germán Barrionuevo
Brain Sci. 2011, 1(1), 1-2; https://doi.org/10.3390/brainsci1010001 - 15 Jul 2010
Cited by 1 | Viewed by 6197
Abstract
During the first ten years that followed “The Decade of the Brain”, the quest of neuroscience for understanding brain function in health and disease has greatly expanded to include molecular, developmental, cognitive and evolutionary aspects of the nervous system. This increased multidisciplinary effort [...] Read more.
During the first ten years that followed “The Decade of the Brain”, the quest of neuroscience for understanding brain function in health and disease has greatly expanded to include molecular, developmental, cognitive and evolutionary aspects of the nervous system. This increased multidisciplinary effort has been complemented by the spectacular development of highly sophisticated experimental methods. Neuroscientists can now perform studies ranging from molecular and imaging analysis of single pre- and postsynaptic neuronal processes to imaging of neural activity in the whole brain during perceptual and motor behavioral tasks. At the same time, theoretical advances in neuroscience have been aided by the rapid development of mathematical and computational simulations of biologically and functionally realistic single cells and complex neural networks across multiple spatiotemporal scales. Therefore, neuroscientists are more than ever in a position to deliver answers to basic, medical and biotechnological questions related to brain function and dysfunction. [...] Full article
Next Issue
Back to TopTop