# Equivalence of RABBITT and Streaking Delays in Attosecond-Time-Resolved Photoemission Spectroscopy at Solid Surfaces

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Methods

## 3. Results

#### 3.1. From RABBITT Regime to Streaking Regime

#### 3.2. Comparison of Streaking and RABBITT Delays with Classical Photoemission Times

## 4. Conclusions

_{2}photoemission spectra were successfully explained by the model applied here using jellium-type potential and including electron–hole interaction for electron transport while treating angular momentum influences as intra-atomic effects. Additionally, they exhibited stable surface conditions, which is helpful for such a challenging experiment [10].

## Author Contributions

## Funding

## Conflicts of Interest

## Appendix A. Extraction of Delays

**Figure A1.**Analysis of simulated photoelectron spectra for a 50 eV photoelectron interacting with an IR pulse with a center wavelength of 800 nm, pulse duration of 5 fs, and maximum electric field amplitude ${E}_{0}$ = $1\mathrm{V}/\mathrm{nm}$. (

**a**) Photoelectron is generated by a single-attosecond pulse (streaking). IR vector potential (red line) is fitted to the simulated data points. The residuum between model function and data points (blue line) exhibits systematic deviations in the order of ${10}^{-3}$ with respect to the streaking amplitude. (

**b**) Photoelectron is generated by an attosecond pulse train (RABBITT). Equation (9) (red line) is fitted to the simulated data points. Here, the residuum between model function and data points (blue line) shows systematic deviations in the order of a few percent of maximum side-band intensity.

## References

- Drescher, M.; Hentschel, M.; Kienberger, R.; Tempea, G.; Spielmann, C.; Reider, G.A.; Corkum, P.B.; Krausz, F. X-ray Pulses Approaching the Attosecond Frontier. Science
**2001**, 291, 1923–1927. [Google Scholar] [CrossRef] [PubMed][Green Version] - Paul, P.M.; Toma, E.S.; Breger, P.; Mullot, G.; Augé, F.; Balcou, P.; Muller, H.G.; Agostini, P. Observation of a Train of Attosecond Pulses from High Harmonic Generation. Science
**2001**, 292, 1689–1692. [Google Scholar] [CrossRef] [PubMed] - Hentschel, M.; Kienberger, R.; Spielmann, C.; Reider, G.A.; Milosevic, N.; Brabec, T.; Corkum, P.; Heinzmann, U.; Drescher, M.; Krausz, F. Attosecond metrology. Nature
**2001**, 414, 509–513. [Google Scholar] [CrossRef] [PubMed] - Gallmann, L.; Cirelli, C.; Keller, U. Attosecond Science: Recent Highlights and Future Trends. Annu. Rev. Phys. Chem.
**2012**, 63, 447–469. [Google Scholar] [PubMed] - Schultze, M.; Fiess, M.; Karpowicz, N.; Gagnon, J.; Korbman, M.; Hofstetter, M.; Neppl, S.; Cavalieri, A.L.; Komninos, Y.; Mercouris, T.; et al. Delay in Photoemission. Science
**2010**, 328, 1658–1662. [Google Scholar] [CrossRef] [PubMed] - Klünder, K.; Dahlström, J.M.; Gisselbrecht, M.; Fordell, T.; Swoboda, M.; Guénot, D.; Johnsson, P.; Caillat, J.; Mauritsson, J.; Maquet, A.; et al. Probing Single-Photon Ionization on the Attosecond Time Scale. Phys. Rev. Lett.
**2011**, 106, 143002. [Google Scholar] [CrossRef] [PubMed] - Dahlström, J.M.; Guénot, D.; Klünder, K.; Gisselbrecht, M.; Mauritsson, J.; L’Huillier, A.; Maquet, A.; Taïeb, R. Theory of attosecond delays in laser-assisted photoionization. Chem. Phys.
**2013**, 414, 53–64. [Google Scholar] [CrossRef][Green Version] - Nisoli, M.; Decleva, P.; Calegari, F.; Palacios, A.; Martín, F. Attosecond Electron Dynamics in Molecules. Chem. Rev.
**2017**, 117, 10760–10825. [Google Scholar] [CrossRef] - Neppl, S.; Ernstorfer, R.; Cavalieri, A.L.; Lemell, C.; Wachter, G.; Magerl, E.; Bothschafter, E.M.; Jobst, M.; Hofstetter, M.; Kleineberg, U.; et al. Direct observation of electron propagation and dielectric screening on the atomic length scale. Nature
**2015**, 517, 342–346. [Google Scholar] [CrossRef][Green Version] - Siek, F.; Neb, S.; Bartz, P.; Hensen, M.; Strüber, C.; Fiechter, S.; Torrent-Sucarrat, M.; Silkin, V.M.; Krasovskii, E.E.; Kabachnik, N.M.; et al. Angular momentum–induced delays in solid-state photoemission enhanced by intra-atomic interactions. Science
**2017**, 357, 1274–1277. [Google Scholar] [CrossRef] - Ossiander, M.; Riemensberger, J.; Neppl, S.; Mittermair, M.; Schäffer, M.; Duensing, A.; Wagner, M.S.; Heider, R.; Wurzer, M.; Gerl, M.; et al. Absolute timing of the photoelectric effect. Nature
**2018**, 561, 374–377. [Google Scholar] [CrossRef] [PubMed] - Cavalieri, A.L.; Müller, N.; Uphues, T.; Yakovlev, V.S.; Baltuška, A.; Horvath, B.; Schmidt, B.; Blümel, L.; Holzwarth, R.; Hendel, S.; et al. Attosecond spectroscopy in condensed matter. Nature
**2007**, 449, 1029–1032. [Google Scholar] [CrossRef] [PubMed] - Seiffert, L.; Liu, Q.; Zherebtsov, S.; Trabattoni, A.; Rupp, P.; Castrovilli, M.C.; Galli, M.; Süßmann, F.; Wintersperger, K.; Stierle, J.; et al. Attosecond chronoscopy of electron scattering in dielectric nanoparticles. Nat. Phys.
**2017**, 13, 766–770. [Google Scholar] [CrossRef] - Pazourek, R.; Nagele, S.; Burgdörfer, J. Attosecond chronoscopy of photoemission. Rev. Mod. Phys.
**2015**, 87, 765–802. [Google Scholar] [CrossRef][Green Version] - Maquet, A.; Caillat, J.; Taïeb, R. Attosecond delays in photoionization: time and quantum mechanics. J. Phys. B At. Mol. Opt. Phys.
**2014**, 47, 204004. [Google Scholar] [CrossRef] - Kazansky, A.K.; Echenique, P.M. One-Electron Model for the Electronic Response of Metal Surfaces to Subfemtosecond Photoexcitation. Phys. Rev. Lett.
**2009**, 102, 177401. [Google Scholar] [CrossRef] [PubMed] - Lemell, C.; Solleder, B.; Tőkési, K.; Burgdörfer, J. Simulation of attosecond streaking of electrons emitted from a tungsten surface. Phys. Rev. A
**2009**, 79, 062901. [Google Scholar] [CrossRef] - Krasovskii, E.E.; Friedrich, C.; Schattke, W.; Echenique, P.M. Rapid propagation of a Bloch wave packet excited by a femtosecond ultraviolet pulse. Phys. Rev. B
**2016**, 94, 195434. [Google Scholar] [CrossRef][Green Version] - Borisov, A.G.; Sánchez-Portal, D.; Kazansky, A.K.; Echenique, P.M. Resonant and nonresonant processes in attosecond streaking from metals. Phys. Rev. B
**2013**, 87, 121110. [Google Scholar] [CrossRef] - Krasovskii, E.E. Attosecond spectroscopy of solids: Streaking phase shift due to lattice scattering. Phys. Rev. B
**2011**, 84, 195106. [Google Scholar] [CrossRef] - Liao, Q.; Thumm, U. Attosecond Time-Resolved Photoelectron Dispersion and Photoemission Time Delays. Phys. Rev. Lett.
**2014**, 112, 023602. [Google Scholar] [CrossRef] [PubMed] - Gebauer, A.; Neb, S.; Enns, W.; Heinzmann, U.; Kazansky, A.K.; Pfeiffer, W. Photoemission time versus streaking delay in attosecond time-resolved solid state photoemission. Submitted to EPJ Web Conf.
**2018**. [Google Scholar] - Tao, Z.; Chen, C.; Szilvasi, T.; Keller, M.; Mavrikakis, M.; Kapteyn, H.; Murnane, M. Direct time-domain observation of attosecond final-state lifetimes in photoemission from solids. Science
**2016**, 353, 62–67. [Google Scholar] [CrossRef] - Smirnova, O.; Mouritzen, A.S.; Patchkovskii, S.; Ivanov, M.Y. Coulomb–laser coupling in laser-assisted photoionization and molecular tomography. J. Phys. B At. Mol. Opt. Phys.
**2007**, 40, F197–F206. [Google Scholar] [CrossRef][Green Version] - Nagele, S.; Pazourek, R.; Feist, J.; Doblhoff-Dier, K.; Lemell, C.; Tőkési, K.; Burgdörfer, J. Time-resolved photoemission by attosecond streaking: extraction of time information. J. Phys. B At. Mol. Opt. Phys.
**2011**, 44, 081001. [Google Scholar] [CrossRef][Green Version] - Li, X.F.; L’Huillier, A.; Ferray, M.; Lompré, L.A.; Mainfray, G. Multiple-harmonic generation in rare gases at high laser intensity. Phys. Rev. A
**1989**, 39, 5751–5761. [Google Scholar] [CrossRef] - McPherson, A.; Gibson, G.; Jara, H.; Johann, U.; Luk, T.S.; McIntyre, I.A.; Boyer, K.; Rhodes, C.K. Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases. J. Opt. Soc. Am. B
**1987**, 4, 595. [Google Scholar] [CrossRef] - Muller, H.G. Reconstruction of attosecond harmonic beating by interference of two-photon transitions. Appl. Phys. B
**2002**, 74, s17–s21. [Google Scholar] [CrossRef] - Itatani, J.; Quéré, F.; Yudin, G.L.; Ivanov, M.Y.; Krausz, F.; Corkum, P.B. Attosecond Streak Camera. Phys. Rev. Lett.
**2002**, 88, 173903. [Google Scholar] [CrossRef][Green Version] - Miaja-Avila, L.; Lei, C.; Aeschlimann, M.; Gland, J.L.; Murnane, M.M.; Kapteyn, H.C.; Saathoff, G. Laser-Assisted Photoelectric Effect from Surfaces. Phys. Rev. Lett.
**2006**, 97, 113604. [Google Scholar] [CrossRef] - Cattaneo, L.; Vos, J.; Lucchini, M.; Gallmann, L.; Cirelli, C.; Keller, U. Comparison of attosecond streaking and RABBITT. Opt. Express
**2016**, 24, 29060. [Google Scholar] [CrossRef] [PubMed][Green Version] - Kasmi, L.; Lucchini, M.; Castiglioni, L.; Kliuiev, P.; Osterwalder, J.; Hengsberger, M.; Gallmann, L.; Krüger, P.; Keller, U. Effective mass effect in attosecond electron transport. Optica
**2017**, 4, 1492. [Google Scholar] [CrossRef] - Kazansky, A.K.; Kabachnik, N.M. Theoretical description of atomic photoionization by an attosecond XUV pulse in a strong laser field: effects of rescattering and orbital polarization. J. Phys. B At. Mol. Opt. Phys.
**2007**, 40, 2163–2177. [Google Scholar] [CrossRef] - Fleck, J.A.; Morris, J.R.; Feit, M.D. Time-Dependent Propagation of High Energy Laser Beams through the Atmosphere. Appl. Phys. B
**1976**, 10, 129–160. [Google Scholar] [CrossRef] - Feit, M.D.; Fleck, J.A. Solution of the Schrödinger equation by a spectral method II: Vibrational energy levels of triatomic molecules. J. Chem. Phys.
**1983**, 78, 301–308. [Google Scholar] [CrossRef] - Lewenstein, M.; Balcou, P.; Ivanov, M.Y.; L’Huillier, A.; Corkum, P.B. Theory of high-harmonic generation by low-frequency laser fields. Phys. Rev. A
**1994**, 49, 2117–2132. [Google Scholar] [CrossRef] [PubMed] - Corkum, P.B. Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett.
**1993**, 71, 1994–1997. [Google Scholar] [CrossRef][Green Version] - Seah, M.P.; Dench, W.A. Quantitative Electron Spectroscopy of Surfaces: A Standard Data Base for Electron Inelastic Mean Free Paths in Solids. Surf. Interface Anal.
**1979**, 1, 2–11. [Google Scholar] [CrossRef] - Guggenmos, A.; Akil, A.; Ossiander, M.; Schäffer, M.; Azzeer, A.M.; Boehm, G.; Amann, M.-C.; Kienberger, R.; Schultze, M.; Kleineberg, U. Attosecond photoelectron streaking with enhanced energy resolution for small-bandgap materials. Opt. Lett.
**2016**, 41, 3714. [Google Scholar] [CrossRef] - Chen, C.; Tao, Z.; Carr, A.; Matyba, P.; Szilvási, T.; Emmerich, S.; Piecuch, M.; Keller, M.; Zusin, D.; Eich, S.; et al. Distinguishing attosecond electron–electron scattering and screening in transition metals. Proc. Natl. Acad. Sci. USA
**2017**, 114, E5300–E5307. [Google Scholar] [CrossRef][Green Version] - Jiménez-Galán, Á.; Martín, F.; Argenti, L. Two-photon finite-pulse model for resonant transitions in attosecond experiments. Phys. Rev. A
**2016**, 93, 023429. [Google Scholar] [CrossRef]

**Figure 1.**Principle of (

**a**) as-streaking and (

**b**) reconstruction of attosecond beating by interference of two-photon transitions (RABBITT) at solid surfaces: Initial state ${\Phi}_{0}\left(z\right)$ is excited into the continuum by a single-attosecond extreme-ultraviolet (EUV) pulse (green) or by an attosecond pulse train (red), respectively. The time–energy bandwidth product results in broad energy distribution in the continuum in the case of a single-attosecond pulse (SAP, green) and two narrow lines in the case of an attosecond pulse train (APT, red). The continuum wave packet $\Phi \left(z\right)$, i.e., a single electron wave packet (streaking) or an electron pulse train (RABBITT), travels toward the surface and is emitted into the vacuum (schematic wave packet and laser-pulse plots are not true to scale). As soon as the photoelectron leaves the surface, it starts interacting with the infrared (IR) pulse (violet). In the case of a single electron wave packet, the energy distribution accumulates a shift determined by IR vector potential. This results in a streaking spectrogram (upper-right panel). Here, the white solid line corresponds to the streaked momentum expectation value, while the white dashed line corresponds to the momentum expectation value without IR interaction. White vertical lines indicate the delay between streaking trace and zero IR–EUV pulse delay. If it is excited by an APT (RABBITT), at each half-cycle of the IR field, a photoelectron wave packet is emitted. Absorption and emission of IR photons leads to the formation of side bands in the RABBITT spectrum (lower-right panel). Intensity oscillation in the central side band (between white dashed lines) is shifted with respect to zero IR–EUV pulse delay (white vertical lines).

**Figure 2.**Schematic high harmonic spectrum of a few-cycle IR pulse. In the intermediate energy regime, separated harmonic lines of equal height form a plateau. Spectral filtering in this regime leads to EUV APTs. In the high-energy regime, a cutoff continuum is formed. To obtain SAPs, this regime needs to be spectrally filtered.

**Figure 3.**Normalized intensity of EUV excitation pulses (solid line) in the time domain corresponding to the EUV spectra shown in Figure 4a–d. Pulse train envelopes are also shown (dotted lines). The envelope full width at half maximum (FWHM) pulse durations are (

**a**) 6.7 fs, (

**b**) 1.7 fs, (

**c**) 1.1 fs, and (

**d**) 474 as.

**Figure 4.**Simulated photoelectron spectra (color plots) corresponding to four different EUV excitation spectra (black lines). All spectra were individually normalized. EUV pulse (train) was given by the Fourier transform of the EUV spectra. IR pulse was treated independently, with a center wavelength of 800 nm, pulse duration of 5 fs, and maximum electric field amplitude ${E}_{0}=1\mathrm{V}/\mathrm{nm}$. Effective propagation distance was 5 Å, and initial-state binding energy was ${\epsilon}_{0}=-52.9\mathrm{eV}$.

**Figure 5.**Comparison of streaking and RABBITT delays with classical photoemission transport times ${t}_{\mathrm{PE}}$. (

**a**) Variation of streaking (green crosses) and RABBITT delays (red dots), as well as classical photoemission times (black) as a function of (vacuum) kinetic energy. For the streaking data, error bars are not shown because they are smaller than the symbol size. Streaking and RABBITT delays were extracted from spectrograms, calculated by solving the one-dimensional time-dependent Schrödinger equation (TDSE) (Equation (6)) for potential properties described in the main text. (

**b**) Difference between RABBITT and streaking delays and classical photoemission times. (

**c**) Difference between RABBITT and streaking delays.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Gebauer, A.; Neb, S.; Enns, W.; Stadtmüller, B.; Aeschlimann, M.; Pfeiffer, W.
Equivalence of RABBITT and Streaking Delays in Attosecond-Time-Resolved Photoemission Spectroscopy at Solid Surfaces. *Appl. Sci.* **2019**, *9*, 592.
https://doi.org/10.3390/app9030592

**AMA Style**

Gebauer A, Neb S, Enns W, Stadtmüller B, Aeschlimann M, Pfeiffer W.
Equivalence of RABBITT and Streaking Delays in Attosecond-Time-Resolved Photoemission Spectroscopy at Solid Surfaces. *Applied Sciences*. 2019; 9(3):592.
https://doi.org/10.3390/app9030592

**Chicago/Turabian Style**

Gebauer, Andreas, Sergej Neb, Walter Enns, Benjamin Stadtmüller, Martin Aeschlimann, and Walter Pfeiffer.
2019. "Equivalence of RABBITT and Streaking Delays in Attosecond-Time-Resolved Photoemission Spectroscopy at Solid Surfaces" *Applied Sciences* 9, no. 3: 592.
https://doi.org/10.3390/app9030592