The Reference Phase Correction for the Fluctuated Scanning Lines and the Slope of the Stage in Tissue Characterization by Scanning Acoustic Microscope
Abstract
:1. Introduction
2. Materials and Methods
2.1. Hypothetical Calculation
2.2. Experimental Setup
2.3. Tissue Preparation
2.4. Practical Calculation
2.5. Statistical Analysis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Manduca, A.; Oliphant, T.E.; Dresner, M.A.; Mahowald, J.L.; Kruse, S.A.; Amromin, E.; Felmlee, J.P.; Greenleaf, J.F.; Ehman, R.L. Magnetic Resonance Elastography: Non-Invasive Mapping of Tissue Elasticity. Med. Image Anal. 2001, 5, 237–254. [Google Scholar] [CrossRef]
- Wang, S.; Larin, K.V. Optical Coherence Elastography for Tissue Characterization: A Review. J. Biophotonics 2014, 8, 279–302. [Google Scholar] [CrossRef] [PubMed]
- Sigrist, R.M.; Liau, J.; El Kaffas, A.; Chammas, M.C.; Willmann, J.K. Ultrasound Elastography: Review of Techniques and Clinical Applications. Theranostics 2017, 7, 1303–1329. [Google Scholar] [CrossRef] [PubMed]
- Garra, B.S. Elastography: History, Principles, and Technique Comparison. Abdom. Imaging 2015, 40, 680–697. [Google Scholar] [CrossRef]
- Patel, V.; Dahl, J.J.; Bradway, D.P.; Doherty, J.R.; Smith, S.W. Acoustic Radiation Force Impulse Imaging on an IVUS Circular Array. In Proceedings of the 2013 IEEE International Ultrasonics Symposium (IUS), Prague, Czech Republic, 21–25 July 2013. [Google Scholar] [CrossRef]
- Taljanovic, M.S.; Gimber, L.H.; Becker, G.W.; Latt, L.D.; Klauser, A.S.; Melville, D.M.; Gao, L.; Witte, R.S. Shear-Wave Elastography: Basic Physics and Musculoskeletal Applications. RadioGraphics 2017, 37, 855–870. [Google Scholar] [CrossRef]
- Song, P.; Zhao, H.; Urban, M.W.; Manduca, A.; Pislaru, S.V.; Kinnick, R.R.; Pislaru, C.; Greenleaf, J.F.; Chen, S. Improved Shear Wave Motion Detection Using Pulse-Inversion Harmonic Imaging with a Phased Array Transducer. IEEE Trans. Med. Imaging 2013, 32, 2299–2310. [Google Scholar] [CrossRef]
- Hansen, H.H.G.; Saris, A.E.C.M.; Vaka, N.R.; Nillesen, M.M.; De Korte, C.L. Ultrafast Vascular Strain Compounding Using Plane Wave Transmission. J. Biomech. 2014, 47, 815–823. [Google Scholar] [CrossRef]
- Saijo, Y. Acoustic Microscopy: Latest Developments and Applications. Imaging Med. 2009, 1, 47–63. [Google Scholar] [CrossRef]
- Saijo, Y.; Miyakawa, T.; Sasaki, H.; Tanaka, M.; Nitta, S.I. Acoustic Properties of Aortic Aneurysm Obtained with Scanning Acoustic Microscopy. Ultrasonics 2004, 42, 695–698. [Google Scholar] [CrossRef]
- Miura, K.; Egawa, Y.; Moriki, T.; Mineta, H.; Harada, H.; Baba, S.; Yamamoto, S. Microscopic Observation of Chemical Modification in Sections Using Scanning Acoustic Microscopy. Pathol. Int. 2015, 65, 355–366. [Google Scholar] [CrossRef]
- Saijo, Y.; Tanaka, M.; Okawai, H.; Sasaki, H.; Nitta, S.I.; Dunn, F. Ultrasonic Tissue Characterization of Infarcted Myocardium by Scanning Acoustic Microscopy. Ultrasound Med. Biol. 1997, 23, 77–85. [Google Scholar] [CrossRef]
- Saijo, Y.; Santos Filho, E.; Sasaki, H.; Yambe, T.; Tanaka, M.; Hozumi, N.; Kobayashi, K.; Okada, N. Ultrasonic Tissue Characterization of Atherosclerosis by a Speed-of-Sound Microscanning System. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2007, 54, 1571–1577. [Google Scholar] [CrossRef] [PubMed]
- Miura, K.; Nasu, H.; Yamamoto, S. Scanning Acoustic Microscopy for Characterization of Neoplastic and Inflammatory Lesions of Lymph Nodes. Sci. Rep. 2013, 3. [Google Scholar] [CrossRef] [PubMed]
- Bilen, B.; Sener, L.T.; Albeniz, I.; Sezen, M.; Unlu, M.B.; Ugurlucan, M. Determination of Ultrastructural Properties of Human Carotid Atherosclerotic Plaques by Scanning Acoustic Microscopy, Micro-Computer Tomography, Scanning Electron Microscopy and Energy Dispersive X-ray Spectroscopy. Sci. Rep. 2019, 9. [Google Scholar] [CrossRef] [PubMed]
- Okawai, H.; Tanaka, M.; Dunn, F. Non-Contact Acoustic Method for the Simultaneous Measurement of Thickness and Acoustic Properties of Biological Tissues. Ultrasonics 1990, 28, 401–410. [Google Scholar] [CrossRef]
- Saijo, Y.; Tanaka, M.; Okawai, H.; Dunn, F. The Ultrasonic Properties of Gastric Cancer Tissues Obtained with a Scanning Acoustic Microscope System. Ultrasound Med. Biol. 1991, 17, 709–714. [Google Scholar] [CrossRef]
- Van der Steen, A.F.W.; Cuypers, M.H.M.; Thijssen, J.M.; De Wilde, P.C.M. Influence of Histochemical Preparation on Acoustic Parameters of Liver Tissue: A 5-MHz Study. Ultrasound Med. Biol. 1991, 17, 879–891. [Google Scholar] [CrossRef]
- Lee, C.K.; Murakami, Y.; Hozumi, N.; Nagao, M.; Kobayashi, K.; Saijo, Y.; Tanaka, N.; Ohtsuki, S. Improvement of the Precision of Ultrasonic Microscope for Biological Tissue Using the Automatic Extraction of the Reference Signals. IEEE Trans. Fundam. Mater. 2005, 125, 145–152. [Google Scholar] [CrossRef]
- Hozumi, N.; Yamashita, R.; Lee, C.K.; Nagao, M.; Kobayashi, K.; Saijo, Y.; Tanaka, M.; Tanaka, N.; Ohtsuki, S. Ultrasonic Sound Speed Microscope for Biological Tissue Characterization Driven by Nanosecond Pulse. Acoust. Sci. Technol. 2003, 24, 386–390. [Google Scholar] [CrossRef]
- Hozumi, N.; Yamashita, R.; Lee, C.K.; Nagao, M.; Kobayashi, K.; Saijo, Y.; Tanaka, M.; Tanaka, N.; Ohtsuki, S. Time–frequency Analysis for Pulse Driven Ultrasonic Microscopy for Biological Tissue Characterization. Ultrasonics 2004, 42, 717–722. [Google Scholar] [CrossRef]
- Yan, H.; Peng, K.; Xu, C.; Lin, Q. Properties of Copper Film Characterized by Scanning Acoustic Microscope. In Proceedings of the 2013 Far East Forum on Nondestructive Evaluation/Testing: New Technology and Application, Jinan, China, 17–20 June 2013. [Google Scholar] [CrossRef]
- Youssef, S.; Seviaryna, I.; Shum, D.; Maeva, E.; Malyarenko, E.; Rahman, N.; Maev, R.G. High-resolution Quantitative Acoustic Microscopy of Cutaneous Carcinoma and Melanoma: Comparison with Histology. Skin Res. Technol. 2019, 25, 662–671. [Google Scholar] [CrossRef] [PubMed]
- Leithe, E.; Sirnes, S.; Omori, Y.; Rivedal, E. Downregulation of Gap Junctions in Cancer Cells. Crit. Rev.™ Oncog. 2006, 12, 225–256. [Google Scholar] [CrossRef] [PubMed]
Tissue Skin Layer | Average Speed of Sound (m/s) |
---|---|
Epidermis (D) | 1704 ± 43 |
Hypodermis (C) | 1572 ± 17 |
Muscle (B) | 1727 ± 58 |
Dermis (A) | 1595 ± 28 |
Back skin layer follicle (E) | 1693 ± 39 |
Malignant melanoma (F) | 1719 ± 36 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Truong, N.T.P.; Kim, H.; Lee, D.; Kang, Y.-H.; Na, S.; Oh, J. The Reference Phase Correction for the Fluctuated Scanning Lines and the Slope of the Stage in Tissue Characterization by Scanning Acoustic Microscope. Appl. Sci. 2019, 9, 4883. https://doi.org/10.3390/app9224883
Truong NTP, Kim H, Lee D, Kang Y-H, Na S, Oh J. The Reference Phase Correction for the Fluctuated Scanning Lines and the Slope of the Stage in Tissue Characterization by Scanning Acoustic Microscope. Applied Sciences. 2019; 9(22):4883. https://doi.org/10.3390/app9224883
Chicago/Turabian StyleTruong, Nguyen Thanh Phong, Hyehyun Kim, Donghae Lee, Yeon-Hee Kang, Sungsoo Na, and Junghwan Oh. 2019. "The Reference Phase Correction for the Fluctuated Scanning Lines and the Slope of the Stage in Tissue Characterization by Scanning Acoustic Microscope" Applied Sciences 9, no. 22: 4883. https://doi.org/10.3390/app9224883
APA StyleTruong, N. T. P., Kim, H., Lee, D., Kang, Y.-H., Na, S., & Oh, J. (2019). The Reference Phase Correction for the Fluctuated Scanning Lines and the Slope of the Stage in Tissue Characterization by Scanning Acoustic Microscope. Applied Sciences, 9(22), 4883. https://doi.org/10.3390/app9224883