How Working Tasks Influence Biocontamination in an Animal Facility
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Facility
2.2. Sampling and Analysis of Airborne Bacteria and Fungi
2.3. Inhalable Dust Sampling and Analysis of Endotoxin, (1,3)-β-d-glucan and Allergens
2.4. Statistical Analysis
3. Results
3.1. Airborne Bacteria and Fungi
3.2. Endotoxin, (1,3)-β-d-glucan and Allergens
3.3. Effect of the Working Activities
3.4. Effect of Animal Strains and Changing Cages Frequency
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zahradnik, E.; Raulf, M. Respiratory allergens from furred mammals: Environmental and occupational exposure. Vet. Sci. 2017, 4, 38. [Google Scholar] [CrossRef] [PubMed]
- Zahradnik, E.; Raulf, M. Animal allergens and their presence in the environment. Front. Immunol. 2014, 3, 76. [Google Scholar] [CrossRef] [PubMed]
- Liccardi, G.; Calzetta, L.; Baldi, G.; Berra, A.; Billeri, L.; Caminati, M.; Capano, P.; Carpentieri, E.; Ciccarelli, A.; Crivellaro, M.A.; et al. Italian Allergic Respiratory Diseases Task ForceAllergic sensitization to common pets (cats/dogs) according to different possible modalities of exposure: An Italian Multicenter Study. Clin. Mol. Allergy 2018, 16, 3. [Google Scholar] [CrossRef]
- Liccardi, G.; Salzillo, A.; Piccolo, A.; Calzetta, L.; Rogliani, P. Dysfunction of small airways and prevalence, airway responsiveness and inflammation in asthma: Much more than small particle size of pet animal allergens. Ups. J. Med. Sci. 2016, 121, 196–197. [Google Scholar] [CrossRef] [PubMed]
- Patelis, A.; Dosanjh, A.; Gunnbjörnsdottir, M.; Borres, M.P.; Högman, M.; Alving, K.; Janson, C.; Malinovschi, A. New data analysis in a population study raises the hypothesis that particle size contributes to the pro-asthmatic potential of small pet animal allergens. Ups. J. Med. Sci. 2016, 121, 25–32. [Google Scholar] [CrossRef]
- Stave, G.M. Occupational animal allergy. Curr. Allergy Asthma Rep. 2018, 18, 11. [Google Scholar] [CrossRef] [PubMed]
- Mason, H.J.; Willerton, L. Airborne exposure to laboratory animal allergens. AIMS Allergy Immunol. 2017, 1, 78–88. [Google Scholar] [CrossRef]
- Simoneti, C.S.; Ferraz, E.; Menezes, M.B.; Bagatin, E.; Arruda, L.K.; Vianna, E.O. Allergic sensitization to laboratory animals is more associated with asthma, rhinitis, and skin symptoms than sensitization to common allergens. Clin. Exp. Allergy 2017, 47, 1436–1444. [Google Scholar] [CrossRef]
- Bush, R.K.; Stave, G.M. Laboratory animal allergy: An update. ILAR J. 2003, 44, 28–51. [Google Scholar] [CrossRef]
- Lai, P.S.; Allen, J.G.; Hutchinson, D.S.; Ajami, N.J.; Petrosino, J.F.; Winters, T.; Hug, C.; Wartenberg, G.R.; Vallarino, J.; Christiani, D.C. Impact of environmental microbiota on human microbiota of workers in academic mouse research facilities: An observational study. PLoS ONE 2017, 12, e0180969. [Google Scholar] [CrossRef] [PubMed]
- Oppliger, A.; Barresi, F.; Maggi, M.; Schmid-Grendelmeier, P.; Huaux, F.; Hotz, P.; Dressel, H. Association of endotoxin and allergens with respiratory and skin symptoms: A descriptive study in laboratory animal workers. Ann. Work. Expo. Health 2017, 61, 822–835. [Google Scholar] [CrossRef] [PubMed]
- Samadi, S.; Heederik, D.J.; Krop, E.J.; Jamshidifard, A.R.; Willemse, T.; Wouters, I.M. Allergen and endotoxin exposure in a companion animal hospital. Occup. Environ. Med. 2010, 67, 486–492. [Google Scholar] [CrossRef] [PubMed]
- Pacheco, K.A.; McCammon, C.; Thorne, P.S.; O’Neill, M.E.; Liu, A.H.; Martyny, J.W.; Vandyke, M.; Newman, L.S.; Rose, C.S. Characterization of endotoxin and mouse allergen exposure in mouse facilities and research laboratories. Am. Occup. Hyg. 2006, 50, 563–572. [Google Scholar]
- Platts-Mills, J.; Custis, N.; Kenney, A.; Tsay, A.; Chapman, M.; Feldman, S.; Platts-Mills, T. The effects of cage design on airborne allergens and endotoxin in animal rooms: High-volume measurements with an ion-charging device. Contemp. Top. Lab. Anim. Sci. 2005, 44, 12–16. [Google Scholar] [PubMed]
- Lieutier-Colas, F.; Meyer, P.; Larsson, P.; Malmberg, P.; Frossard, N.; Pauli, G.; de Blay, F. Difference in exposure to airborne major rat allergen (Rat n 1) and to endotoxin in rat quartes according to tasks. Clin. Exp. Allergy 2001, 31, 1449–1456. [Google Scholar] [CrossRef] [PubMed]
- Straumfors, A.; Eduard, W.; Andresen, K.; Sjaastad, A.K. Predictors for increased and reduced rat and mouse allergen exposure in laboratory animal facilities. Ann. Work Expo. Health 2018, 62, 953–965. [Google Scholar] [CrossRef]
- Feary, J.; Cullinan, P. Laboratory animal allergy: A new world. Curr. Opin. Allergy Clin. Immunol. 2016, 16, 107–112. [Google Scholar] [CrossRef]
- Simoneti, C.S.; Freitas, A.S.; Barbosa, M.C.; Ferraz, E.; de Menezes, M.B.; Bagatin, E.; Arruda, L.K.; Vianna, E.O. Study of risk factors for atopic sensitization, asthma, and bronchial hyperresponsiveness in animal laboratory workers. J. Occup. Health 2016, 58, 7–15. [Google Scholar] [CrossRef]
- Kampitak, T.; Betschel, S.D. Anaphylaxis in laboratory workers because of rodent handling: Two case reports. J. Occup. Health 2016, 58, 381–383. [Google Scholar] [CrossRef]
- National Institute for Occupational Safety and Health (NIOSH). Preventing Asthma in Animal Handlers; NIOSH: Washington, DC, USA, 1998; pp. 97–116.
- Gordon, S. Laboratory animal allergy: A British perspective on a global problem. ILAR J. 2001, 42, 37–46. [Google Scholar] [CrossRef]
- Corradi, M.; Ferdenzi, E.; Mutti, A. The characteristics, treatment and prevention of laboratory animal allergy. Lab. Anim. 2012, 42, 26–33. [Google Scholar] [CrossRef] [PubMed]
- D’Ovidio, M.C.; Martini, A.; Melis, P.; Signorini, S. Value of the microarray for the study of laboratory animal allergy (LAA). G. Ital. Med. Lav. Ergon. 2011, 33, 109–116. [Google Scholar] [PubMed]
- Folletti, I.; Forcina, A.; Marabini, A.; Bussetti, A.; Siracusa, A. Have the prevalence and incidence of occupational asthma and rhinitis because of laboratory animals declined in the last 25 years? Allergy 2008, 63, 834–841. [Google Scholar] [CrossRef]
- D’Ovidio, M.C.; Wirz, A.; Zennaro, D.; Masssari, S.; Melis, P.; Peri, V.M.; Rafaiani, C.; Riviello, M.C.; Mari, A. Biological occupational allergy: Protein microarray for the study of laboratory animal allergy (LAA). AIMS Public Health 2018, 5, 352–365. [Google Scholar] [CrossRef] [PubMed]
- Larese Filon, F.; Drusian, A.; Mauro, M.; Negro, C. Laboratory animal allergy reduction from 2001 to 2016: An intervention study. Respir. Med. 2018, 136, 71–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tafuro, F.; Selis, L.; Goldoni, M.; Stendardo, M.; Mozzoni, P.; Ridolo, E.; Boschetto, P.; Corradi, M. Biomarkers of respiratory allergy in laboratory animal care workers: An observational study. Int. Arch. Occup. Environ. Health 2018, 91, 735–744. [Google Scholar] [CrossRef]
- Bhabha, F.K.; Nixon, R. Occupational exposure to laboratory animals causing a severe exacerbation of atopic eczema. Austr. J. Dermatol. 2012, 53, 155–156. [Google Scholar] [CrossRef] [PubMed]
- Jones, M. Laboratory animal allergy in the modern era. Curr. Allergy Asthma Rep. 2015, 15, 73. [Google Scholar] [CrossRef]
- Muzembo, B.A.; Eitoku, M.; Inaoka, Y.; Oogiku, M.; Kawakubo, M.; Tai, R.; Takechi, M.; Hirabayashi, K.; Yoshida, N.; Ngatu, N.R.; et al. Prevalence of occupational allergy in medical researchers exposed to laboratory animals. Ind. Health 2014, 52, 256–261. [Google Scholar] [CrossRef]
- Acton, D.; McCauley, L. Laboratory animal allergy: An occupational hazard. AAOHN J. 2007, 55, 241–244. [Google Scholar] [CrossRef]
- Elliott, L.; Heederik, D.; Marshall, S.; Peden, D.; Loomis, D. Incidence of allergy and allergy symptoms among workers exposed to laboratory animals. Occup. Environ. Med. 2005, 62, 766–771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaliste, E.; Linnainmaa, M.; Meklin, T.; Nevalainen, A. Airborne contaminants in conventional laboratory rabbit rooms. Lab. Anim. 2002, 36, 43–50. [Google Scholar] [CrossRef] [Green Version]
- Freitas, A.S.; Simoneti, C.S.; Ferraz, E.; Bagatin, E.; Brandão, I.T.; Silva, C.L.; Borges, M.C.; Vianna, EO. Exposure to high endotoxin concentration increases wheezing prevalence among laboratory animal workers: A cross-sectional study. BMC Pulm. Med. 2016, 16, 69. [Google Scholar] [CrossRef] [PubMed]
- Douwes, J. (1-->3)-Beta-D-glucans and respiratory health: A review of the scientific evidence. Indoor Air 2005, 15, 160–169. [Google Scholar] [CrossRef] [PubMed]
- Paba, E.; Chiominto, A.; Marcelloni, A.M.; Proietto, A.; Sisto, R. Exposure to airborne culturable microorganisms and endotoxin in two Italian poultry slaughterhouses. J. Occup. Environ. Hyg. 2014, 11, 469–478. [Google Scholar] [CrossRef]
- Rylander, R.; Lin, R.H. (1-->3)-beta-D-glucan-relationship to indoor air-related symptoms, allergy and asthma. Toxicology 2000, 152, 47–52. [Google Scholar] [CrossRef]
- Rylander, R.; Norhall, M.; Engdahl, U.; Tunsater, A.; Holt, P.G. Airways inflammation, atopy, and (1-->3)-beta-D-glucan exposure in two schools. Am. J. Respir. Crit. Care Med. 1998, 158, 1685–1687. [Google Scholar] [CrossRef]
- Ooms, T.G.; Artwohl, J.E.; Conroy, L.M.; Schoonover, T.D.; Fortman, J.D. Concentration and emission of airborne contaminants in a laboratory animal facility housing rabbits. J. Am. Assoc. Lab. Anim. Sci. 2008, 47, 39–48. [Google Scholar] [PubMed]
- Implementation of the Directive 2010/63/EU on the protection of animals used for scientific purposes, Italian Legislative Decree 4 march 2014, n. 26. Off. J. 2014, 60.
- Larone, D.H. Medically Important Fungi: A guide to Identification, 3rd ed.; ASM: Washington, DC, USA, 1995. [Google Scholar]
- Lee, T.; Grinshpun, S.A.; Kim, K.Y.; Iossifova, Y.; Adhikari, A.; Reponen, T. Relationship between indoor and outdoor airborne fungal spores, pollen, and (1→3)-β-D-glucan in homes without visible mold growth. Aerobiologia 2006, 22, 227–236. [Google Scholar] [CrossRef]
- Iossifova, Y.Y.; Reponen, T.; Bernstein, D.I.; Levin, L.; Kalra, H.; Campo, P.; Villareal, M.; Lockey, J.; Hershey, G.K.; LeMasters, G. House dust (1-3)-beta-D-glucan and wheezing in infants. Allergy 2007, 62, 504–513. [Google Scholar] [CrossRef]
- Implementation of the article 1 of the law 3 august 2007, no. 123 concerning the protection of health and safety in the workplaces, Italian Legislative Decree no. 81/2008. Ordinary Suppl. No.108 Off. J. 2008, 101.
- Supplementary and corrective provisions of the legislative decree 9 April 2008, no. 81, concerning the protection of health and safety in the workplaces, Italian Legislative Decree no. 106/2009. Ordinary Suppl. No. 142 Off. J. 2009, 180.
- Duchaine, C.; Grimard, Y.; Cormier, Y. Influence of building maintenance, environmental factors, and seasons on airborne contaminants of swine. Am. Ind. Hyg. Assoc. J. 2000, 61, 56–63. [Google Scholar] [CrossRef]
- Mandryk, J.; Alwis, K.U.; Hocking, A.D. Effects of personal exposures on pulmonary function and work-related symptoms among sawmill workers. Ann. Occup. Hyg. 2000, 44, 281–289. [Google Scholar] [CrossRef]
- Health Council of the Netherlands. Endotoxins-Health-Based Recommended Occupational Exposure Limit; Publication no. 2010/04OSH. 010; Health Council of the Netherlands: The Hague, The Netherlands, 2010. [Google Scholar]
- Whiteside, T.E.; Thigpen, J.E.; Kissling, M.G.; Grant, M.G.; Forsythe, D.B. Endotoxin, coliform, and dust levels in various types of rodent bedding. J. Am. Assoc. Lab. Anim. Sci. 2010, 49, 184–189. [Google Scholar] [PubMed]
- Hwang, S.H.; Park, D.J.; Park, W.M.; Park, D.U.; Ahn, J.K.; Yoon, C.S. Seasonal variation in airborne endotoxin levels in indoor environments with different micro-environmental factors in Seoul, South Korea. Environ. Res. 2016, 145, 101–108. [Google Scholar] [CrossRef]
- Ohman, J.L.; Hagberg, K.; MacDonald, M.R.; Jones, R.R.; Paigen, B.J.; Kacergis, J.B. Distribution of airborne mouse allergen in a major mouse breeding facility. J. Allergy. Clin. Immunol. 1994, 94, 810–817. [Google Scholar]
- Liccardi, G.; Triggiani, M.; Piccolo, A.; Salzillo, A.; Parente, R.; Manzi, F.; Vatrella, A. Sensitization to common and uncommon pets or other furry animals: Which may be common mechanisms? Transl. Med. UniSa 2016, 14, 9–14. [Google Scholar]
- Liccardi, G.; Salzillo, A.; Piccolo, A.; D’Amato, M.; D’Amato, G. Can the levels of Can f 1 in indoor environments be evaluated without considering passive transport of allergen indoors? J. Allergy Clin. Immunol. 2013, 131, 1258–1259. [Google Scholar] [CrossRef]
- Krop, E.J.; Doekes, G.; Stone, M.J.; Alberse, R.C.; van der Zee, J.S. Spreading of occupational allergens: Laboratory animal allergens on hair-covering caps and in mattress dust of laboratory animal workers. Occup. Environ. Med. 2007, 64, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Pereira, F.L.; Silva, D.A.; Sopelete, M.C.; Sung, S.S.; Taketomi, E.A. Mite and cat allergen exposure in Brazilian public transport vehicles. Ann. Allergy Asthma Immunol. 2004, 93, 179–184. [Google Scholar] [CrossRef]
- Ferrari, M.; Perfetti, L.; Moscato, G. A case of indirect exposure to cat at school. Monaldi Arch. Chest. Dis. 2003, 59, 169–170. [Google Scholar] [PubMed]
Rooms | Strains | Total Number | Male | Female | Pups | Changing Cages |
---|---|---|---|---|---|---|
A | Rats | 149 | 63 | 86 | 0 | Bi-weekly |
B | Mice | 494 | 328 | 166 | 0 | Weekly |
C | Mice | 682 | 311 | 267 | 104 | Weekly |
D | Mice | 613 | 225 | 283 | 105 | Bi-weekly |
E | Rats | 155 | 85 | 60 | 10 | Weekly |
F | Mice | 723 | 316 | 380 | 27 | Bi-weekly |
G | Rats | 377 | 37 | 85 | 255 | Bi-weekly |
Workplace | Mesophilic Bacteria (UFC/m3) | Fungi (UFC/m3) | Endotoxin (EU/m3) | (1,3)-β-d-glucan (ng/m3) | Rat n 1 (ng/m3) | Mus m 1 (ng/m3) |
---|---|---|---|---|---|---|
Animal rooms | ±52.26 | ±0.58 | ±1.35 | ±0.59 | ±0.16 | ±4.56 |
Washing area clean | ±21.18 | ±16.91 | ±9.25 | |||
Washing area dirty | ±434.69 | ±66.18 | ±6.54 | |||
Storage area (**) | ±44.77 | ±94.89 | ±163.54 | ±4.57 | ±0.00 | ±8.32 |
Workplace | Mesophilic Bacteria (UFC/m3) | Fungi (UFC/m3) | Endotoxin (EU/m3) | (1,3)-β-d-glucan (ng/m3) | Rat n 1 (ng/m3) | Mus m 1 (ng/m3) |
---|---|---|---|---|---|---|
Animal rooms | 130.7 ± 207.5 | 1.6 ± 3.04 | 5.9 ± 3.6 | 1.5 ± 1.3 | 0.1 ± 0.4 | 4.3 ± 11.0 |
Room A (149) | 63.1 ± 92.7 | 2.1 ± 4.4 | 7.8 ± 0.7 | 1.8 ± 1.2 | 0.0 ± 0.0 | 0.0 ± 0.1 |
Room B (494) | 122.9 ± 110.2 | 2.0 ± 1.7 | 7.2 ± 4.2 | 3.6 ± 2.3 | 0.0 ± 0.0 | 6.1 ± 9.9 |
Room C (682) | 112.4 ± 115.7 | 1.1 ± 2.4 | 3.6 ± 3.5 | 0.9 ± 0.6 | 0.1 ± 0.3 | 2.7 ± 4.2 |
Room D (613) | 64.8 ± 83.5 | 1.3 ± 2.7 | 0.1 ± 0.0 | 1.9 ± 0.8 | 0.5 ± 0.9 | 0.3 ± 0.2 |
Room E (155) | 317.0 ± 427.0 | 3.3 ± 5.3 | 7.3 ± 3.2 | 0.1 ± 0.0 | 0.3 ± 0.5 | 0.1 ± 0.2 |
Room F (723) | 66.7 ± 75.8 | 0.4 ± 1.1 | 11.1 ± 4.8 | 1.3 ± 0.8 | 0.0 ± 0.0 | 20.6 ± 24.1 |
Room G (377) | 220.5 ± 232.5 | 1.7 ± 1.7 | 5.2 ± 2.6 | 0.9 ± 0.3 | 0.0 ± 0.0 | 0.1 ± 0.2 |
Washing area clean | 78.3 ± 2.4 | 19.3 ± 13.6 | 7.4 ± 1.8 | 1.3 ± 0.7 | 0.4 ± 0.0 | |
Washing area dirty | 211.1 ± 175.0 | 107.8 ± 63.1 | 16.7 ± 4.7 | 1.6 ± 0.9 | 61.5 ± 0.0 | |
Storage area * | 266.7 ±36.1 | 112.5 ± 76.4 | 124.2 ± 102.8 | 3.9 ± 1.7 | 1.5 ± 0.8 | |
Offices | 308.0 ± 91.2 | 60.0 ± 25.9 | 2.4 ± 0.8 | 1.4 ± 1.1 |
Workplace | Endotoxin (EU/m3) | (1,3)-β-d-glucan (ng/m3) | Rat n 1 (ng/m3) | Mus m 1 (ng/m3) |
---|---|---|---|---|
Animal rooms | ||||
Before | 5.2 ± 3.7 | 0.8 ± 0.5 | 0.1 ± 0.1 | |
During | 7.1 ± 3.8 | 2.4 ± 1.9 | 0.4 ± 0.6 | 10.5 ± 17.4 |
After | 5.4 ± 3.5 | 1.4 ± 0.6 | 2.2 ± 5.3 | |
Storage area | ||||
Morning | 37.8 ± 37.3 | 3.5 ± 2.4 | 0.9 ± 0.0 | |
Afternoon | 210.7 ± 20.0 | 4.3 ± 1.6 | 2.2 ± 0.0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
M. Marcelloni, A.; Chiominto, A.; Di Renzi, S.; Melis, P.; Wirz, A.; C. Riviello, M.; Massari, S.; Sisto, R.; D’Ovidio, M.C.; Paba, E. How Working Tasks Influence Biocontamination in an Animal Facility. Appl. Sci. 2019, 9, 2216. https://doi.org/10.3390/app9112216
M. Marcelloni A, Chiominto A, Di Renzi S, Melis P, Wirz A, C. Riviello M, Massari S, Sisto R, D’Ovidio MC, Paba E. How Working Tasks Influence Biocontamination in an Animal Facility. Applied Sciences. 2019; 9(11):2216. https://doi.org/10.3390/app9112216
Chicago/Turabian StyleM. Marcelloni, Anna, Alessandra Chiominto, Simona Di Renzi, Paola Melis, Annarita Wirz, Maria C. Riviello, Stefania Massari, Renata Sisto, Maria C. D’Ovidio, and Emilia Paba. 2019. "How Working Tasks Influence Biocontamination in an Animal Facility" Applied Sciences 9, no. 11: 2216. https://doi.org/10.3390/app9112216
APA StyleM. Marcelloni, A., Chiominto, A., Di Renzi, S., Melis, P., Wirz, A., C. Riviello, M., Massari, S., Sisto, R., D’Ovidio, M. C., & Paba, E. (2019). How Working Tasks Influence Biocontamination in an Animal Facility. Applied Sciences, 9(11), 2216. https://doi.org/10.3390/app9112216