Mathematical Modelling of Nitrate Removal from Water Using a Submerged Membrane Adsorption Hybrid System with Four Adsorbents
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.1.1. Feed Solution
2.1.2. Adsorbents
2.1.3. Membrane Characteristics
2.2. Methodology
2.2.1. Submerged Membrane Adsorption Hybrid System (SMAHS)
2.2.2. Analytical Method
2.2.3. Mathematical Modelling of the Results of SMAHS
3. Results and Discussion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Fewtrell, L. Drinking-water nitrate, methemoglobinemia, and global burden of disease: A discussion. Environ. Health Perspect. 2004, 112, 1371–1374. [Google Scholar] [CrossRef] [PubMed]
- Meenakshi, S.; Viswanathan, N. Identification of selective ion-exchange resin for fluoride sorption. J. Colloid Interface Sci. 2007, 308, 438–450. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Shim, W.; Vigneswaran, S.; Ngo, H. Effect of operating parameters in a submerged membrane adsorption hybrid system: Experiments and mathematical modeling. J. Membr. Sci. 2005, 247, 65–74. [Google Scholar] [CrossRef]
- Gao, W.; Liang, H.; Ma, J.; Han, M.; Chen, Z.L.; Han, Z.S.; Li, G.B. Membrane fouling control in ultrafiltration technology for drinking water production: A review. Desalination 2011, 272, 1–8. [Google Scholar] [CrossRef]
- Johir, M.A.; Shanmganathan, S.; Vigneswaran, S.; Kandasamy, J. Performance of submerged membrane bioreactor (SMBR) with and without the adition of the different particle sizes of GAC as suspended medium. Bioresour. Technol. 2013, 141, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Shanmuganathan, S.; Nguyen, T.V.; Shim, W.G.; Kandasamy, J.; Vigneswaran, S. Performance of submerged membrane—Ion exchange hybrid sysytem with Purolite A502PS in treating reverse osmosis feed. Sep. Purif. Technol. 2014, 122, 24–31. [Google Scholar] [CrossRef]
- Bryjak, M.; Wolska, J.; Kabay, N. Removal of boron from seawater by adsorption–membrane hybrid process: Implementation and challenges. Desalination 2008, 223, 57–62. [Google Scholar] [CrossRef]
- Nur, T.; Loganathan, P.; Johir, M.A.H.; Kandasamy, J.; Vigneswaran, S. Removin rubidium using potassium cobalt hexacyanoferrate in the membrane adsorption hybrid system. Sep. Purif. Technol. 2018, 191, 286–294. [Google Scholar] [CrossRef]
- Johir, M.; Nguyen, T.T.; Mahatheva, K.; Pradhan, M.; Ngo, H.H.; Guo, W.; Vigneswaran, S. Removal of phosphorus by a high rate membrane adsorption hybrid system. Bioresour. Technol. 2016, 201, 365–369. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W.; Choi, S.P.; Thiruvenkatachari, R.; Shim, W.G.; Moon, H. Submerged microfiltration membrane coupled with alum coagulation/powdered activated carbon adsorption for complete decolorization of reactive dyes. Water Res. 2006, 40, 435–444. [Google Scholar] [CrossRef] [PubMed]
- Shanmuganathan, S.; Nguyen, T.V.; Jeong, S.; Kandasamy, J.; Vigneswaran, S. Submerged membrane—(GAC) Adsorption hybrid system in reverse osmosis concentrate treatment. Sep. Purif. Technol. 2015, 146, 8–14. [Google Scholar] [CrossRef]
- Kalaruban, M.; Loganathan, P.; Kandasamy, J.; Vigneswaran, S. Submerged membrane adsorption hybrid system using four adsorbents in removing nitrate from water. Environ. Sci. Pollut. Res. 2017. [Google Scholar] [CrossRef] [PubMed]
- Vigneswaran, S.; Chaudhary, D.; Ngo, H.; Shim, W.; Moon, H. Application of a PAC-membrane hybrid system for removal of organics from secondary sewage effluent: Experiments and modelling. Sep. Sci. Technol. 2003, 38, 2183–2199. [Google Scholar] [CrossRef]
- Kalaruban, M.; Loganathan, P.; Shim, W.; Kandasamy, J.; Naidu, G.; Nguyen, T.V.; Vigneswaran, S. Removing nitrate from water using iron-modified Dowex 21K XLT ion exchange resin: Batch and fluidised-bed adsorption studies. Sep. Purif. Technol. 2016, 158, 62–70. [Google Scholar] [CrossRef]
- Kalaruban, M.; Loganathan, P.; Shim, W.; Kandasamy, J.; Ngo, H.; Vigneswaran, S. Enhanced removal of nitrate from water using amine-grafted agricultural wastes. Sci. Total Environ. 2016, 565, 503–510. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Guidelines for Drinking-Water Quality, 4th ed.; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Zhao, Y.; Taylor, J.S.; Chellam, S. Predicting RO/NF water quality by modified solution diffusion model and artificial neural networks. J. Membr. Sci. 2005, 263, 38–46. [Google Scholar] [CrossRef]
- Matsui, Y.; Ando, N.; Sasaki, H.; Matsushita, T.; Ohno, K. Branched pore kinetic model analysis of geosmin adsorption on super-powdered activated carbon. Water Res. 2009, 43, 3095–3103. [Google Scholar] [CrossRef] [PubMed]
- Villadsen, J.; Stewart, W. Solution of boundary-value problems by orthogonal collocation. Chem. Eng. Sci. 1967, 22, 1483–1501. [Google Scholar] [CrossRef]
- Nelder, J.A.; Mead, R. A simplex method for function minimization. Comput. J. 1965, 7, 308–313. [Google Scholar] [CrossRef]
Adsorbent | Particle Size (µm) | Zero Point of Charge pH ** | Langmuir Adsorption Capacity (mg N/g) | Column Adsorption Capacity * (mg N/g) |
---|---|---|---|---|
Dowex-Fe | 300–1200 | >8 | 75.3 | 31.4 |
Dowex | 300–1200 | >8 | 27.6 | 18.6 |
Amine grafted coconut copra | 300–600 | >8.5 | 50.2 | 18.6 |
Amine grafted corn cob | 300–600 | >8.5 | 49.9 | 15.3 |
Flux (L/m2 h) | Adsorbent | Volume of Water Treated (L) | Nitrate Adsorbed/Mass of Adsorbent (mg N/g) |
---|---|---|---|
15 | Dowex-Fe | 14.5 | 19.2 |
Dowex | 10.8 | 12.8 | |
AG coconut copra | 9.3 | 12.2 | |
AG corn cob | 7.8 | 9.0 | |
10 | Dowex-Fe | 13.8 | 18.6 |
Dowex | 11.8 | 12.7 | |
AG coconut copra | 9.9 | 11.8 | |
AG corn cob | 7.9 | 8.8 | |
5 | Dowex-Fe | 13.2 | 18.1 |
Dowex | 8.9 | 11.5 | |
AG coconut copra | 8.9 | 11.7 | |
AG corn cob | 7.9 | 8.8 | |
2.5 | Dowex-Fe | 11.4 | 16.4 |
Dowex | 8.9 | 11.2 | |
AG coconut copra | 7.4 | 9.8 | |
AG corn cob | 6.5 | 7.7 |
Adsorbents | Parameters | Filtration Flux | |||
---|---|---|---|---|---|
2.5 L/m2 h | 5 L/m2 h | 10 L/m2 h | 15 L/m2 h | ||
Dowex-Fe | Ds (m2/s) | 3.3 × 10−12 | 3.3 × 10−12 | 3.3 × 10−12 | 3.3 × 10−12 |
kf (m/s) | 2.0 × 10−4 | 2.0 × 10−4 | 2.3 × 10−4 | 3.9 × 10−4 | |
MCC (m/s) | 1.1 × 10−12 | 1.3 × 10−12 | 1.4 × 10−12 | 2.0 × 10−12 | |
R2 | 0.852 | 0.854 | 0.976 | 0.956 | |
Dowex | Ds (m2/s) | 1.7 × 10−12 | 1.7 × 10−12 | 1.7 × 10−12 | 1.7 × 10−12 |
kf (m/s) | 8.8 × 10−5 | 9.1 × 10−5 | 11.7 × 10−5 | 15.4 × 10−5 | |
MCC (m/s) | 1.2 × 10−12 | 1.5 × 10−12 | 1.6 × 10−12 | 1.9 × 10−12 | |
R2 | 0.829 | 0.904 | 0.851 | 0.839 | |
AG coconut copra | Ds (m2/s) | 1.6 × 10−11 | 1.6 × 10−11 | 1.6 × 10−11 | 1.6 × 10−11 |
kf (m/s) | 3.5 × 10−5 | 3.6 × 10−5 | 3.7 × 10−5 | 6.4 × 10−5 | |
MCC (m/s) | 9.1 × 10−14 | 1.0 × 10−13 | 1.3 × 10−13 | 1.4 × 10−13 | |
R2 | 0.744 | 0.904 | 0.970 | 0.964 | |
AG corn cob | Ds (m2/s) | 4.3 × 10−11 | 4.3 × 10−11 | 4.3 × 10−11 | 4.3 × 10−11 |
kf (m/s) | 2.7 × 10−5 | 2.9 × 10−5 | 3.0 × 10−5 | 12 × 10−5 | |
MCC (m/s) | 9.3 × 10−14 | 1.3 × 10−13 | 1.3 × 10−13 | 1.9 × 10−13 | |
R2 | 0.735 | 0.888 | 0.945 | 0.860 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalaruban, M.; Loganathan, P.; Shim, W.G.; Kandasamy, J.; Vigneswaran, S. Mathematical Modelling of Nitrate Removal from Water Using a Submerged Membrane Adsorption Hybrid System with Four Adsorbents. Appl. Sci. 2018, 8, 194. https://doi.org/10.3390/app8020194
Kalaruban M, Loganathan P, Shim WG, Kandasamy J, Vigneswaran S. Mathematical Modelling of Nitrate Removal from Water Using a Submerged Membrane Adsorption Hybrid System with Four Adsorbents. Applied Sciences. 2018; 8(2):194. https://doi.org/10.3390/app8020194
Chicago/Turabian StyleKalaruban, Mahatheva, Paripurnanda Loganathan, Wang Geun Shim, Jaya Kandasamy, and Saravanamuthu Vigneswaran. 2018. "Mathematical Modelling of Nitrate Removal from Water Using a Submerged Membrane Adsorption Hybrid System with Four Adsorbents" Applied Sciences 8, no. 2: 194. https://doi.org/10.3390/app8020194
APA StyleKalaruban, M., Loganathan, P., Shim, W. G., Kandasamy, J., & Vigneswaran, S. (2018). Mathematical Modelling of Nitrate Removal from Water Using a Submerged Membrane Adsorption Hybrid System with Four Adsorbents. Applied Sciences, 8(2), 194. https://doi.org/10.3390/app8020194