# A Survey on Robust Video Watermarking Algorithms for Copyright Protection

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Basic Models of Video Watermarking

#### 2.1. Watermark Generation

#### 2.1.1. Arnold Transform

#### 2.1.2. Magic Square Transform

#### 2.1.3. Logistic Chaotic Map

#### 2.2. Watermark Embedding

#### 2.2.1. Original Video-Based Watermarking Algorithms

#### 2.2.2. Video Watermarking Algorithms in Encoding Process

#### 2.2.3. Video Watermarking Algorithms after Compression

#### 2.3. Watermark Extraction

## 3. Properties of Video Watermarking

#### 3.1. Imperceptibility

#### 3.2. Robustness

#### 3.3. Watermark Capacity, BIR, and Real-Time Performance

## 4. Robust Watermarking Algorithms Based on Original Videos

#### 4.1. Video Watermarking in Spatial Domain

#### 4.2. Video Watermarking in Transform Domain

#### 4.2.1. DCT-Based Watermarking Algorithms

#### 4.2.2. DWT-Based Watermarking Algorithms

_{3}sub-band coefficients are obtained for watermark embedding.

#### 4.2.3. SVD-Based Watermarking Algorithms

_{2}sub-bands using its high stability, and then watermark embedding can be realized.

#### 4.2.4. Hybrid Transform-Based Watermarking Algorithms

## 5. Robust Watermarking Algorithms Based on Compressed Videos

#### 5.1. MPEG-Based Watermarking Algorithms

#### 5.2. H.264-Based Watermarking Algorithms

#### 5.3. H.265-Based Watermarking Algorithms

## 6. Conclusions and Outlook

#### 6.1. Conclusions

#### 6.2. Challenges and Outlook

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Eldering, C.A.; Sylla, M.L.; Eisenach, J.A. Is there a Moore’s law for bandwidth? IEEE Commun. Mag.
**1999**, 37, 117–121. [Google Scholar] [CrossRef] - Wolfgang, R.B.; Podilchuk, C.I.; Delp, E.J. Perceptual watermarks for digital images and video. Proc. IEEE
**1999**, 87, 1108–1126. [Google Scholar] [CrossRef] [Green Version] - Lempel, A. Cryptology in transition. Comput. Surv.
**1979**, 11, 285–303. [Google Scholar] [CrossRef] - Jung, K.H. A survey of reversible data hiding methods in dual images. IETE Tech. Rev.
**2016**, 33, 441–452. [Google Scholar] [CrossRef] - Carpentieri, B.; Castiglione, A.; De Santis, A.; Palmieri, F.; Pizzolante, R. One-pass lossless data hiding and compression of remote sensing data. Future Gener. Comput. Syst.
**2019**, 90, 222–239. [Google Scholar] [CrossRef] - Parah, S.A.; Sheikh, J.A.; Akhoon, J.A.; Loan, N.A.; Bhat, G.M. Information hiding in edges: A high capacity information hiding technique using hybrid edge detection. Multimedia Tools Appl.
**2018**, 77, 185–207. [Google Scholar] [CrossRef] - Atawneh, S.; Almomani, A.; Sumari, P. Steganography in digital images: Common approaches and tools. IETE Tech. Rev.
**2013**, 30, 344–358. [Google Scholar] [CrossRef] - Van Schyndel, R.G.; Tirkel, A.Z.; Osborne, C.F. A digital watermark. In Proceedings of the 1st IEEE International Conference on Image Processing, Austin, TX, USA, 13–16 November 1994. [Google Scholar]
- Zhang, H.X.; Zhang, Z.Y.; Qiu, P.L. A novel algorithm of covert communication. Acta Electron. Sin.
**2003**, 31, 514–517. [Google Scholar] - Doërr, G.; Dugelay, J.L. A guide tour of video watermarking. Signal Process. Image Commun.
**2003**, 18, 263–282. [Google Scholar] [CrossRef] - Lu, C.S.; Liao, H.Y.M. Multipurpose watermarking for image authentication and protection. IEEE Trans. Image Process.
**2001**, 10, 1579–1592. [Google Scholar] [PubMed] [Green Version] - Verma, V.S.; Jha, R.K. An overview of robust digital image watermarking. IETE Tech. Rev.
**2015**, 32, 479–496. [Google Scholar] [CrossRef] - Devi, B.P.; Singh, K.M.; Roy, S. New copyright protection scheme for digital images based on visual cryptography. IETE J. Res.
**2017**, 63, 870–880. [Google Scholar] [CrossRef] - Channapragada, R.S.R.; Prasad, M.V.N.K. Digital watermarking based on magic square and Ridgelet transform techniques. Adv. Intell. Syst. Comput.
**2014**, 243, 143–161. [Google Scholar] - Liu, R. An improved Logistic chaotic map and self-adaptive model for image encryption. J. Comput. Methods Sci. Eng.
**2016**, 16, 287–301. [Google Scholar] [CrossRef] - Biswas, S.N.; Nahar, S.; Das, S.R.; Petriu, E.M.; Assaf, M.H.; Groza, V. MPEG-2 digital video watermarking technique. In Proceedings of the International Instrumentation and Measurement Technology Conference, Graz, Austria, 13–16 May 2012. [Google Scholar]
- Wang, C.Y.; Zhang, Y.P.; Zhou, X. Review on digital image watermarking based on singular value decomposition. J. Inf. Process. Syst.
**2017**, 13, 1585–1601. [Google Scholar] - Zheng, X.S.; Zhao, Y.L.; Li, N. Classification model and enhancement of robustness in video digital watermark. In Proceedings of the Chinese Control and Decision Conference, Yantai, China, 2–4 July 2008. [Google Scholar]
- Li, Z.H.; Zhang, Z.Z.; Guo, S.; Wang, J.W. Video inter-frame forgery identification based on the consistency of quotient of MSSIM. Secur. Commun. Netw.
**2016**, 9, 4548–4556. [Google Scholar] [CrossRef] - Wang, C.Y.; Zhang, Y.P.; Zhou, X. Robust image watermarking algorithm based on ASIFT against geometric attacks. Appl. Sci.
**2018**, 8, 410. [Google Scholar] [CrossRef] - Hu, H.T.; Hsu, L.Y. Exploring DWT-SVD-DCT feature parameters for robust multiple watermarking against JPEG and JPEG2000 compression. Comput. Electr. Eng.
**2015**, 41, 52–63. [Google Scholar] [CrossRef] - Lei, B.Y.; Tan, E.L.; Chen, S.P.; Ni, D.; Wang, T.F.; Lei, H.J. Reversible watermarking scheme for medical image based on differential evolution. Expert Syst. Appl.
**2014**, 41, 3178–3188. [Google Scholar] [CrossRef] - Jindal, S.; Goel, S.; Puri, T.; Bhardwaj, A.; Mahant, I.; Singh, S.; Sood, D. Performance analysis of LSB based watermarking for optimization of PSNR and MSE. Int. J. Secur. Its Appl.
**2016**, 10, 345–350. [Google Scholar] [CrossRef] - Cox, I.J.; Kilian, J.; Leighton, F.T.; Shamoon, T. Secure spread spectrum watermarking for multimedia. IEEE Trans. Image Process.
**1997**, 6, 1673–1687. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Kaur, H.; Kaur, E.V. Invisible video multiple watermarking using optimized techniques. In Proceedings of the Online International Conference on Green Engineering and Technologies, Coimbatore, India, 19 November 2016. [Google Scholar]
- Bayoudh, I.; Jabra, S.B.; Zagrouba, E. Online multi-sprites based video watermarking robust to collusion and transcoding attacks for emerging applications. Multimedia Tools Appl.
**2017**, 77, 14361–14379. [Google Scholar] [CrossRef] - Masoumi, M.; Rezaei, M.; Hamza, A.B. A blind spatio-temporal data hiding for video ownership verification in frequency domain. AEU-Int. J. Electron. Commun.
**2015**, 69, 1868–1879. [Google Scholar] [CrossRef] - Tokar, T.; Kanocz, T.; Levicky, D. Digital watermarking of uncompressed video in spatial domain. In Proceedings of the 19th International Conference Radioelektronika, Bratislava, Slovakia, 22–23 April 2009. [Google Scholar]
- Preda, R.O.; Vizireanu, N. New robust watermarking scheme for video copyright protection in the spatial domain. UPB Sci. Bull.
**2011**, 73, 93–104. [Google Scholar] - Venugopala, P.S.; Sarojadevi, H.; Chiplunkar, N.N.; Bhat, V. Video watermarking by adjusting the pixel values and using scene change detection. In Proceedings of the 5th International Conference on Signal and Image Processing, Bangalore, India, 8–10 January 2014. [Google Scholar]
- Bahrami, Z.; Tab, F.A. A new robust video watermarking algorithm based on SURF features and block classification. Multimedia Tools Appl.
**2018**, 77, 327–345. [Google Scholar] [CrossRef] - Li, X.; Wang, X.J.; Yang, W.M.; Wang, X. A robust video watermarking scheme to scalable recompression and transcoding. In Proceedings of the International Conference on Electronics Information and Emergency Communication, Beijing, China, 17–19 June 2016. [Google Scholar]
- Li, J.F.; Sui, A.N. A digital video watermarking algorithm based on DCT domain. In Proceedings of the 5th International Joint Conference on Computational Sciences and Optimization, Harbin, China, 23–26 June 2012. [Google Scholar]
- Liu, G.Q.; Zheng, X.S.; Zhao, Y.L.; Li, N. A robust digital video watermark algorithm based on DCT domain. In Proceedings of the International Conference on Computer Application and System Modeling, Taiyuan, China, 22–24 October 2010. [Google Scholar]
- Cheng, M.Z.; Xi, M.C.; Yuan, K.G.; Wu, C.H.; Lei, M. Recoverable video watermark in DCT domain. J. Comput.
**2013**, 8, 533–538. [Google Scholar] [CrossRef] - Nguyen, T.T.; Duan, D.N. A robust blind video watermarking in DCT domain using even-odd quantization technique. In Proceedings of the International Conference on Advanced Technologies for Communications, Ho Chi Minh City, Vietnam, 14–16 October 2015. [Google Scholar]
- Bayoudh, I.; Jabra, S.B.; Zagrouba, E. A robust video watermarking for real-time application. In Proceedings of the 18th International Conference on Advanced Concepts for Intelligent Vision Systems, Antwerp, Belgium, 18–21 September 2017. [Google Scholar]
- Thanh, T.M.; Hiep, P.T.; Tam, T.M.; Tanaka, K. Robust semi-blind video watermarking based on frame-patch matching. AEU-Int. J. Electron. Commun.
**2014**, 68, 1007–1015. [Google Scholar] [CrossRef] - Chen, B.; Wornell, G.W. Quantization index modulation: A class of provably good methods for digital watermarking and information embedding. IEEE Trans. Inf. Theory
**2001**, 47, 1423–1443. [Google Scholar] [CrossRef] - Yang, C.H.; Huang, H.Y.; Hsu, W.H. An adaptive video watermarking technique based on DCT domain. In Proceedings of the 8th International Conference on Computer and Information Technology, Sydney, Australia, 8–11 July 2008. [Google Scholar]
- Huang, H.Y.; Yang, C.H.; Hsu, W.H. A video watermarking technique based on pseudo-3D DCT and quantization index modulation. IEEE Trans. Inf. Forensics Secur.
**2010**, 5, 625–637. [Google Scholar] [CrossRef] - Campisi, P.; Neri, A. 3D-DCT video watermarking using quantization-based methods. In Proceedings of the 15th European Signal Processing Conference, Poznan, Poland, 3–7 September 2007. [Google Scholar]
- Cedillo-Hernandez, A.; Cedillo-Hernandez, M.; Miyatake, M.N.; Meana, H.P. A spatiotemporal saliency-modulated JND profile applied to video watermarking. J. Vis. Commun. Image Represent.
**2018**, 52, 106–117. [Google Scholar] [CrossRef] - Abdulfetah, A.A.; Sun, X.; Yang, H. Robust adaptive video watermarking scheme using visual models in DWT domain. Inf. Technol. J.
**2010**, 9, 1409–1414. [Google Scholar] [CrossRef] - El’Arbi, M.; Koubaa, M.; Charfeddine, M.; Amar, C.B. A dynamic video watermarking algorithm in fast motion areas in the wavelet domain. Multimedia Tools Appl.
**2011**, 55, 579–600. [Google Scholar] [CrossRef] - Singh, K.M. A robust rotation resilient video watermarking scheme based on the SIFT. Multimedia Tools Appl.
**2018**, 77, 16419–16444. [Google Scholar] [CrossRef] - Gao, Q.; Li, Z.; Chen, S.Q. A video dual watermarking algorithm against geometric attack based on integer wavelet and SIFT. In Proceedings of the International Conference on Cryptography, Security and Privacy, Wuhan, China, 17–19 March 2017. [Google Scholar]
- Preda, R.O.; Vizireanu, D.N. A robust digital watermarking scheme for video copyright protection in the wavelet domain. Measurement
**2010**, 43, 1720–1726. [Google Scholar] [CrossRef] - Preda, R.O.; Vizireanu, D.N. Robust wavelet-based video watermarking scheme for copyright protection using the human visual system. J. Electron. Imaging
**2011**, 20, 146–152. [Google Scholar] [CrossRef] - Gupta, G.; Gupta, V.K.; Chandra, M. An efficient video watermarking based security model. Microsyst. Technol.
**2018**, 24, 2539–2548. [Google Scholar] [CrossRef] - Masoumi, M.; Amiri, S. A blind scene-based watermarking for video copyright protection. AEU-Int. J. Electron. Commun.
**2013**, 67, 528–535. [Google Scholar] [CrossRef] - Bhardwaj, A.; Verma, V.S.; Jha, R.K. Robust video watermarking using significant frame selection based on coefficient difference of lifting wavelet transform. Multimedia Tools Appl.
**2018**, 77, 19659–19678. [Google Scholar] [CrossRef] - Kerbiche, A.; Jabra, S.B.; Zagrouba, E.; Charvillat, V. Robust video watermarking approach based on crowdsourcing and hybrid insertion. In Proceedings of the International Conference on Digital Image Computing: Techniques and Applications, Sydney, Australia, 29 November–1 December 2017. [Google Scholar]
- Himeur, Y.; Boukabou, A. A robust and secure key-frames based video watermarking system using chaotic encryption. Multimedia Tools Appl.
**2018**, 77, 8603–8627. [Google Scholar] [CrossRef] - Adul, V.; Mwangi, E. A robust video watermarking approach based on a hybrid SVD/DWT technique. In Proceedings of the IEEE AFRICON: Science, Technology and Innovation for Africa, Cape Town, South Africa, 18–20 September 2017. [Google Scholar]
- Panda, J.; Garg, P. An efficient video watermarking approach using scene change detection. In Proceedings of the India International Conference on Information Processing, Delhi, India, 12–14 August 2016. [Google Scholar]
- Sathya, S.P.A.; Ramakrishnan, S. Fibonacci based key frame selection and scrambling for video watermarking in DWT-SVD domain. Wirel. Pers. Commun.
**2018**, 102, 2011–2031. [Google Scholar] [CrossRef] - Agilandeeswari, L.; Ganesan, K. A robust color video watermarking scheme based on hybrid embedding techniques. Multimedia Tools Appl.
**2016**, 75, 8745–8780. [Google Scholar] [CrossRef] - Ponnisathya, S.; Ramakrishnan, S.; Dhinakaran, S.; Sabari, A.P.; Dhamodharan, P. Chaotic map based video watermarking using DWT and SVD. In Proceedings of the International Conference on Inventive Communication and Computational Technologies, Coimbatore, India, 10–11 March 2017. [Google Scholar]
- Shanmugam, M.; Chokkalingam, A. Performance analysis of 2 level DWT-SVD based non blind and blind video watermarking using range conversion method. Microsyst. Technol.
**2018**, 1–9. [Google Scholar] [CrossRef] - Zhang, X.P.; Li, K. Comments on “An SVD-based watermarking scheme for protecting rightful Ownership”. IEEE Trans. Multimedia
**2005**, 9, 421–423. [Google Scholar] - Kerbiche, A.; Jabra, S.B.; Zagrouba, E.; Charvillat, V. A robust video watermarking based on feature regions and crowdsourcing. Multimedia Tools Appl.
**2018**, 77, 26769–26791. [Google Scholar] [CrossRef] - Gaj, S.; Rathore, A.K.; Sur, A.; Bora, P.K. A robust watermarking scheme against frame blending and projection attacks. Multimedia Tools Appl.
**2017**, 76, 20755–20779. [Google Scholar] [CrossRef] - Joshi, A.M.; Gupta, S.; Girdhar, M.; Agarwal, P.; Sarker, R. Combined DWT-DCT-based video watermarking algorithm using Arnold transform technique. In Proceedings of the International Conference on Data Engineering and Communication Technology, Lavasa City, India, 10–11 March 2016. [Google Scholar]
- Kunhu, A.; Nisi, K.; Sabnam, S.; Majida, A.; Al-Mansoori, S. Index mapping based hybrid DWT-DCT watermarking technique for copyright protection of videos files. In Proceedings of the Online International Conference on Green Engineering and Technologies, Coimbatore, India, 19 November 2016. [Google Scholar]
- Jiang, D.Y.; Li, D.; Kim, J.W. A spread spectrum zero video watermarking scheme based on dual transform domains and log-polar transformation. Int. J. Multimedia Ubiquitous Eng.
**2015**, 10, 367–378. [Google Scholar] [CrossRef] - Gall, D.L. MPEG: A video compression standard for multimedia applications. Commun. ACM
**1991**, 34, 46–58. [Google Scholar] [CrossRef] - Luthra, A.; Sullivan, G.J.; Wiegand, T. Introduction to the special issue on the H.264/AVC video coding standard. IEEE Trans. Circuits Syst. Video Technol.
**2003**, 13, 557–559. [Google Scholar] [CrossRef] [Green Version] - Pan, Z.Q.; Lei, J.J.; Zhang, Y.; Sun, X.M.; Kwong, S. Fast motion estimation based on content property for low-complexity H.265/HEVC encoder. IEEE Trans. Broadcast.
**2016**, 62, 675–684. [Google Scholar] [CrossRef] - Frossard, P.; Verscheure, O. AMISP: A complete content-based MPEG-2 error-resilient scheme. IEEE Trans. Circuits Syst. Video Technol.
**2001**, 11, 989–998. [Google Scholar] [CrossRef] - Wang, Y.; Pearmain, A. Blind MPEG-2 video watermarking in DCT domain robust against scaling. IEE Proc. Vis. Image Signal Process.
**2006**, 153, 581–588. [Google Scholar] [CrossRef] - Li, J.F.; Wang, Y.B.; Dong, S.S. Video watermarking algorithm based DC coefficient. In Proceedings of the 2nd International Conference on Image, Vision and Computing, Chengdu, China, 2–4 June 2017. [Google Scholar]
- Biswas, S.; Das, S.R.; Petriu, E.M. An adaptive compressed MPEG-2 video watermarking scheme. IEEE Trans. Instrum. Meas.
**2005**, 54, 1853–1861. [Google Scholar] [CrossRef] - Tsai, T.H.; Wu, C.Y.; Fang, C.L. Design and implementation of a joint data compression and digital watermarking system in an MPEG-2 video encoder. J. Signal Process. Syst.
**2014**, 74, 203–220. [Google Scholar] [CrossRef] - Khalilian, H.; Bajic, I.V. Video watermarking with empirical PCA-based decoding. IEEE Trans. Image Process.
**2013**, 22, 4825–4840. [Google Scholar] [CrossRef] [PubMed] - Barni, M.; Bartolini, F.; Checcacci, N. Watermarking of MPEG-4 video objects. IEEE Trans. Multimedia
**2005**, 7, 23–32. [Google Scholar] [CrossRef] - Bian, X.B.; Zhu, Q.X. Video protection for MPEG-4 FGS with watermarking. Multimedia Tools Appl.
**2008**, 40, 61–87. [Google Scholar] [CrossRef] - Alattar, A.M.; Lin, E.T.; Celik, M.U. Digital watermarking of low bit-rate advanced simple profile MPEG-4 compressed video. IEEE Trans. Circuits Syst. Video Technol.
**2003**, 13, 787–800. [Google Scholar] [CrossRef] - Su, P.C.; Kuo, T.Y.; Li, M.H. A practical design of digital watermarking for video streaming services. J. Vis. Commun. Image Represent.
**2017**, 42, 161–172. [Google Scholar] [CrossRef] - Gujjunoori, S.; Amberker, B.B. DCT based reversible data embedding for MPEG-4 video using HVS characteristics. J. Inf. Secur. Appl.
**2013**, 18, 157–166. [Google Scholar] [CrossRef] - Joshi, A.M.; Mishra, V.; Patrikar, R.M. Design of real-time video watermarking based on Integer DCT for H.264 encoder. Int. J. Electron.
**2015**, 102, 141–155. [Google Scholar] [CrossRef] - He, Y.L.; Yang, G.B.; Zhu, N.B. A real-time dual watermarking algorithm of H.264/AVC video stream for video-on-demand service. AEU-Int. J. Electron. Commun.
**2012**, 66, 305–312. [Google Scholar] [CrossRef] - Zhang, W.W.; Li, X.; Zhang, Y.Z.; Zhang, R.; Zheng, L.X. Robust video watermarking algorithm for H.264/AVC based on JND model. KSII Trans. Internet Inf. Syst.
**2017**, 11, 2741–2761. [Google Scholar] - Buhari, A.M.; Ling, H.C.; Baskaran, V.M.; Wong, K. Fast watermarking scheme for real-time spatial scalable video coding. Signal Process. Image Commun.
**2016**, 47, 86–95. [Google Scholar] [CrossRef] - Gaj, S.; Patel, A.S.; Sur, A. Object based watermarking for H.264/AVC video resistant to RST attacks. Multimedia Tools Appl.
**2016**, 75, 3053–3080. [Google Scholar] [CrossRef] - Fallahpour, M.; Shirmohammadi, S.; Ghanbari, M. A high capacity data hiding algorithm for H.264/AVC video. Secur. Commun. Netw.
**2015**, 8, 2947–2955. [Google Scholar] [CrossRef] - Nair, R.; Varadharajan, V.; Joglekar, S.; Nallusamy, R.; Paul, S. Robust transcoding resistant watermarking for H.264 standard. Multimedia Tools Appl.
**2014**, 73, 763–778. [Google Scholar] [CrossRef] - Li, J.; Liu, H.M.; Huang, J.W.; Shi, Y.Q. Reference index-based H.264 video watermarking scheme. ACM Trans. Multimedia Comput. Commun. Appl.
**2012**, 8, 33. [Google Scholar] [CrossRef] - Mohammed, A.A.; Ali, N.A. Robust video watermarking scheme using high efficiency video coding attack. Multimedia Tools Appl.
**2018**, 77, 2791–2806. [Google Scholar] [CrossRef] - Gaj, S.; Sur, A.; Bora, P.K. A robust watermarking scheme against re-compression attack for H.265/HEVC. In Proceedings of the 5th National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics, Patna, India, 16–19 December 2015. [Google Scholar]
- Gaj, S.; Kanetkar, A.; Sur, A.; Bora, P.K. Drift-compensated robust watermarking algorithm for H.265/HEVC video stream. ACM Trans. Multimedia Comput. Commun. Appl.
**2017**, 13, 11. [Google Scholar] [CrossRef] - Liu, Y.X.; Liu, S.Y.; Zhao, H.G.; Liu, S.; Feng, C. A data hiding method for H. In 265 without intra-frame distortion drift. In Proceedings of the 13th International Conference on Intelligent Computing, Liverpool, UK, 7–10 August 2017. [Google Scholar]
- Liu, Y.X.; Liu, S.Y.; Zhao, H.G.; Liu, S. A new data hiding method for H.265/HEVC video streams without intra-frame distortion drift. Multimedia Tools Appl.
**2018**. [Google Scholar] [CrossRef] - Cai, C.T.; Feng, G.; Wang, C.; Han, X. A reversible watermarking algorithm for high efficiency video coding. In Proceedings of the 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics, Shanghai, China, 14–16 October 2017. [Google Scholar]
- Chang, P.C.; Chung, K.L.; Chen, J.J.; Lin, C.H.; Lin, T.J. A DCT/DST-based error propagation-free data hiding algorithm for HEVC intra-coded frames. J. Vis. Commun. Image Represent.
**2014**, 25, 239–253. [Google Scholar] [CrossRef] - Elrowayati, A.A.; Abdullah, M.F.L.; Manaf, A.A.; Alfagi, A.S. Robust HEVC video watermarking scheme based on repetition-BCH syndrome code. Int. J. Softw. Eng. Its Appl.
**2016**, 10, 263–270. [Google Scholar] [CrossRef] - Dutta, T.; Gupta, H.P. A robust watermarking framework for high efficiency video coding (HEVC)—Encoded video with blind extraction process. J. Vis. Commun. Image Represent.
**2016**, 38, 29–44. [Google Scholar] [CrossRef] - Dutta, T.; Gupta, H.P. An efficient framework for compressed domain watermarking in P frames of high-efficiency video coding (HEVC)—Encoded video. ACM Trans. Multimedia Comput. Commun. Appl.
**2017**, 13, 12. [Google Scholar] [CrossRef] - Long, M.; Peng, F.; Li, H.Y. Separable reversible data hiding and encryption for HEVC video. J. Real-Time Image Process.
**2018**, 14, 171–182. [Google Scholar] [CrossRef] - Swati, S.; Hayat, K.; Shahid, Z. A watermarking scheme for high efficiency video coding (HEVC). PLoS ONE
**2014**, 9, e105613. [Google Scholar] [CrossRef] [PubMed] - Wang, C.Y.; Shan, R.Y.; Zhou, X. Anti-HEVC recompression video watermarking algorithm based on the all phase biorthogonal transform and SVD. IETE Tech. Rev.
**2018**, 35, 1–17. [Google Scholar] [CrossRef] - Yang, J.; Li, S.B. An efficient information hiding method based on motion vector space encoding for HEVC. Multimedia Tools Appl.
**2018**, 77, 11979–12001. [Google Scholar] [CrossRef] - Shanableh, T. Altering split decisions of coding units for message embedding in HEVC. Multimedia Tools Appl.
**2018**, 77, 8939–8953. [Google Scholar] [CrossRef] - Sujatha, P.; Devi, R. A glance of digital watermarking techniques with an evaluation of Haar and Daubechies wavelet. Int. J. Appl. Eng. Res.
**2017**, 9, 9652–9657. [Google Scholar] - Tew, Y.; Wong, K. An overview of information hiding in H.264/AVC compressed video. IEEE Trans. Circuits Syst. Video Technol.
**2014**, 24, 305–319. [Google Scholar] [CrossRef] - Asikuzzaman, M.; Pickering, M.R. An overview of digital video watermarking. IEEE Trans. Circuits Syst. Video Technol.
**2018**, 28, 2131–2153. [Google Scholar] [CrossRef]

Signal Processing Operations | Geometric Attacks | Temporal Synchronization |
---|---|---|

Gaussian filter (GF), Median filter (MF) | Scaling (Scl) | Frame dropping (FD) |

Average filter (AF), Wiener filter (WF) | Cropping (Crp) | Frame swapping (FS) |

Circular filter (CF), High-pass filter (HPF) | Rotation (Rtt) | Frame insertion (FI) |

Gaussian noise (GN), Impulsive noise (IN) | Frame averaging (FA) | |

Salt & pepper noise (SPN), Speckle noise (SN) | Frame cropping (FC) | |

JPEG, MPEG-2, MPEG-4, H.264, H.265 | ||

Gamma correction (GC), Sharpening (Shp) | ||

Histogram equalization (HE), Blurring (Blu) | ||

Luminance modification (LM), Recompression (Rec) | ||

Contrast enhancement (CE), Transcoding (Trs) |

Ref. | Type | Watermark Preprocessing | Embedding Position |
---|---|---|---|

[26] | Blind | Encoding | MIDSB of Y component; LSB of U and V components |

[28] | Blind | Pseudonoise sequence | Each frame |

[29] | Blind | Pseudorandom noise generator | Luminance component of each frame |

[30] | Blind | - | Luminance component of each frame |

[31] | Semi-blind | - | Blocks with robustness to most attacks |

[32] | Blind | Arnold transform | Frames selected by scene change |

Ref. | Type | Watermark Preprocessing | Embedding Position |
---|---|---|---|

[34] | Blind | Arnold transform | High-frequency coefficients of R, G, and B components |

[35] | Blind | CDMA | DCT coefficients of Y component |

[36] | Blind | - | Robust DCT coefficients selected in Y component |

[37] | Non-blind | - | Selected coefficients in KDCT matrix of Y component |

[38] | Semi-blind | Arnold transform | Low-frequency DCT coefficients of Y component |

[40] | Blind | Permuted processing | AC values of selected DCT blocks in Y component |

[41] | Blind | Pseudorandom generator | Y component of each I frame |

[43] | Blind | - | AC coefficients of each 2D DCT block in Y component |

Ref. | Type | Watermark Preprocessing | Embedding Position |
---|---|---|---|

[44] | Blind | Arnold transform | Middle-frequency DWT coefficients of Y component |

[45] | Blind | Pseudorandom generator | Middle-frequency DWT coefficients of Y component |

[46] | Blind | Arnold transform | High-frequency DWT coefficients of Y component |

[47] | Non-blind | Chaotic encryption | Selected blocks of Y component based on human visual masking threshold |

[48] | Blind | Spread-spectrum technique | LH_{2}, HL_{2}, and HH_{2} sub-bands of Y component |

[49] | Blind | Pseudorandom generator | LH_{2}, HL_{2}, and HH_{2} sub-bands of Y component |

[50] | Blind | Resize | LL and HL sub-bands |

[51] | Blind | Spread-spectrum technique | 3D coefficients of HL, LH, and HH sub-bands |

[52] | Blind | Random shuffling | LH_{3} sub-band of luminance component |

Ref. | Type | Watermark Preprocessing | Embedding Position |
---|---|---|---|

[54] | Blind | Chaotic encryption | Singular value matrix of LL_{1} sub-bands in Y component |

[55] | Blind | Pseudorandom generator | Singular value matrix of diagonal detail coefficients of G component |

[56] | Non-blind | SVD | Singular value matrix of LL_{2} sub-bands in Y component |

[57] | Blind | Fibonacci–Lucas transform | Singular value matrix of LH sub-bands of R component |

[58] | Non-blind | Arnold transform | Singular value matrix of 2-level DWT LH and HL sub-bands in Y component |

[59] | Blind | Chaotic map | Singular value matrix of LL sub-bands in Y component |

[60] | Blind | 2-level DWT | Singular value matrix of HL_{2} sub-bands of LH sub-bands in Y component |

Ref. | Type | Watermark Preprocessing | Embedding Position |
---|---|---|---|

[62] | Blind | Scrambling | Feature regions obtained by crowdsourcing and moving objects |

[63] | Blind | - | Low-frequency DCT coefficients of regions around SIFT points in LLL sub-bands |

[64] | Blind | Arnold transform | Middle-frequency components |

[65] | Blind | Index mapping table | Three selected DCT coefficients of LL_{2} sub-bands in suitable channel |

[66] | Blind | Spread spectrum and Logistic map | Feature values generated by dual transform and log-polar in luminance component |

**Table 7.**Quantitative comparison of invisibility and robustness of several typical algorithms in spatial, DCT, and DWT domains.

Ref. | [26] | [29] | [38] | [41] | [43] | [45] | [46] | [48] | [52] | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

PSNR (dB) | [58, 73] | [33, 44] | 36.85 | [31, 69] | [44, 56] | 56.18 | ≥38 | [45, 49] | 41.50 | |||||

SSIM | - | - | ≥0.93 | - | [0.97, 1] | - | [0.99, 1] | - | - | |||||

Robustness | NC | BER | BER | NC | NC | BER | NC | NC | BER | BER | NC | BER | ||

A T T A C K S | MF (3 × 3) | - | ≤0.007 | - | 0.993 | - | - | - | - | 0.149 | 0.990 | 0.005 | ||

GN | (0.004) | 0.259 | 0.440 | (0.0005) 0.000 | - | 0.997 | 0.050 | - | (0.05) | (0.005) | (0.01) | |||

(0.006) | - | 0.090 | - | 0.985 | 0.015 | 0.001 | 0.841 | 0.080 | ||||||

SPN (0.0005) | 1.000 | 0.000 | 0.000 | - | 0.993 | - | - | - | - | 0.000 | (0.01) | |||

0.937 | 0.032 | |||||||||||||

JPEG (Q = 80) | - | ≤0.447 | - | - | - | - | 0.713 | 0.287 | 0.020 | 0.999 | 0.000 | |||

MPEG-2 | (4 Mbps) | - | ≤0.406 | - | 1.000 | 0.008 | 0.940 | - | - | 0.074 | - | 0.065 | ||

(2 Mbps) | ≤0.476 | - | 1.000 | 0.009 | - | - | 0.252 | - | 0.201 | |||||

MPEG-4 | (2 Mbps) | 0.921 | 0.027 | - | 1.000 | - | 0.008 | 0.790 | - | - | - | - | - | |

(1 Mbps) | 0.921 | 0.027 | 1.000 | 0.009 | ||||||||||

Scl | (1.2) | 1.000 | 0.000 | - | 1.000 | - | 0.064 | 0.673 | - | - | - | (0.5) | ||

(0.8) | 0.868 | 0.046 | 1.000 | 0.023 | 0.979 | 0.012 | ||||||||

Crp | (40%) | 0.495 | 0.129 | - | - | - | - | 0.660 | 0.718 | 0.282 | - | (25%) | ||

(20%) | 1.000 | 0.000 | - | 0.863 | 0.136 | 0.926 | 0.043 | |||||||

FD (10%) | Robust | - | 0.677 | - | - | Robust | 0.996 | 0.004 | 0.015 | 0.894 | 0.051 | |||

FA (10%) | - | ≤0.006 | 1.000 | - | - | Robust | 0.996 | 0.004 | 0.013 | - | - | |||

Other attacks the algorithm can resist | PN, IN, AF, GF, HPF, Trs, Rtt, H.264, and FS | Blu | GF, Rtt, FI, FS, and Blu | WF, LM, and H.264 | IN, Trs, and H.264 | CE, LM, and Rtt | IN, Blu, Shp, GC, Rtt, FS, and FC | Blu and LM | SN, GF, AF, HE, Shp, LM, GC, and H.264 |

**Table 8.**Quantitative comparison of invisibility and robustness of several typical algorithms in hybrid domain.

Ref. | [54] | [57] | [58] | [63] | [64] | [66] | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|

PSNR (dB) | [44, 50] | [41, 53] | [55, 68] | [32, 46] | 48.726 | - | ||||||

SSIM | - | - | ≥0.700 | ≥0.976 | - | - | ||||||

Robustness | NC | BER | NC | BER | NC | BER | NC | NC | NC | BER | ||

A T T A C K S | MF (3 × 3) | 1.000 | 0.000 | 0.963 | - | 0.883 | 0.048 | 0.784 | 0.994 | 0.998 | 0.003 | |

GN (0.01) | 1.000 | 0.000 | 0.970 | 0.127 | 0.954 | 0.022 | - | 0.985 | 0.982 | 0.025 | ||

SPN | (0.01) | 1.000 | 0.000 | 0.970 | 0.269 | - | - | 0.864 | (0.05) 0.995 | 0.999 | 0.002 | |

(0.02) | - | - | 0.988 | 0.035 | 0.788 | 0.994 | 0.009 | |||||

FA | 0.990 | 0.013 | 0.950 | 0.300 | - | 0.921 | 0.976 | 0.034 | ||||

FD | - | 0.983 | 0.163 | 0.985 | 0.019 | - | 0.933 | 0.985 | 0.020 | |||

FS | - | 0.990 | 0.120 | 0.941 | 0.036 | - | 0.936 | 0.980 | 0.027 | |||

Other attacks the algorithm can resist | CF, Blu, Shp, HE, Crp, Scl, and H.264 | Blu and LM | Rtt and CE | GF, CE, LM, Scl, and H.265 | Shp, HE, and GC | GF, NF, Crp, and Rtt |

Ref. | Type | Standard | Embedding Position |
---|---|---|---|

[71] | Blind | MPEG-2 | AC coefficients of luminance component of shadow frames |

[72] | Blind | MPEG-2 | Last DC coefficient of the last macroblock of each slice in Y component |

[73] | Blind | MPEG-2 | DCT coefficients of luminance blocks decomposed from bit streams |

[74] | Blind | MPEG-2 | Spatial or frequency domain of Y-component |

[75] | Blind | MPEG-2 | LL sub-bands of I frames |

[76] | Blind | MPEG-4 | Luminance blocks of selected MBs |

[78] | Blind | MPEG-4 | DCT coefficients of luminance blocks of VOPs |

[79] | Blind | MPEG-4 | Local areas of I frames based on the extraction of feature points |

[80] | Blind | MPEG-4 | Middle-frequency DCT coefficients of Y-component of I frames |

Ref. | Type | Watermark Preprocessing | Embedding Position |
---|---|---|---|

[82] | Blind | CDMA technique | Low-frequency DCT coefficients of Y component of I frames |

[83] | Blind | Spread spectrum | Medium–high frequency DCT coefficients of I frames |

[84] | Non-blind | Pseudorandom sequence | Highest energy coefficient in 4 × 4 luma intra-predicted blocks |

[85] | Non-blind | DCT | DCT coefficients of motion coherent blocks in all frames |

[86] | Blind | Encryption operation | High-frequency DCT coefficients of all frames |

[87] | Blind | Random sequence | I_4 × 4 type of MBs of I frames |

[88] | Blind | Pseudorandom sequence | Index of the reference frame |

Ref. | Type | Watermark Preprocessing | Embedding Position |
---|---|---|---|

[90] | Blind | - | NNZ difference of 4 × 4 luma TBs of intra-predicted frames |

[91] | Blind | Pseudorandom sequence | 4 × 4 luma TBs with high NNZ values in homogeneous regions of I frames |

[92] | Blind | Encoding | Multi-coefficients of the 4 × 4 luminance DCT blocks of selected frames |

[93] | Blind | Encoding | Multi-coefficients of the 4 × 4 luma DST blocks of selected frames |

[94] | Blind | - | QDST coefficients in 4 × 4 luminance PU of I frames |

[95] | Blind | - | QDCT and QDST coefficients of intra prediction residuals |

[96] | Blind | BCH code | Residual QDCT or QDST coefficients within the different size of TUs of I frames |

[97] | Blind | - | Low-frequency nonzero quantized AC coefficients in 4 × 4 blocks of I frames |

[98] | Blind | - | Low-frequency nonzero quantized AC coefficients in 4 × 4 blocks of P frames |

[99] | Blind | Exclusive OR operation | Nonzero AC residual coefficients |

[100] | Blind | - | LSBs of selected nonzero of QTCs of I frames |

[101] | Blind | Arnold transform and APBT | Nonzero coefficient blocks in luminance components with the size of 4 × 4, 8 × 8, and 16 × 16 of I frames |

[102] | Blind | Binarization | Motion vectors of the smallest PUs in CTU |

**Table 12.**Quantitative comparison of invisibility, capacity, BIR, and robustness of several typical algorithms in compressed domain.

Ref. | [75] | [83] | [85] | [88] | [91] | [97] | [98] | ||
---|---|---|---|---|---|---|---|---|---|

PSNR (dB) | 50.89 | 36.33 | [25, 44] | [32, 42] | [32, 50] | [30, 35] | [40, 44] | ||

Capacity (bit) | 2080 | 1317 | - | 1680 | 100 bits/I frame | - | - | ||

BIR (%) | - | ≤1.26 | ≤2.90 | ≤6.48 | ≤2.08 | ≤0.27 | ≤0.14 | ||

Standard | MPEG-2 | MPEG-4 | H.264 | H.264 | H.265 | H.265 | H.265 | ||

Robustness | BER | BER | NC | BER | NC | BER | BER | ||

A T T A C K S | GF (5 × 5) | - | 0.008 | 0.603 | 0.070 | 0.848 | 0.157 | - | |

GN (0.001) | ≤0.197 | (0.005) 0.038 | - | 0.060 | 0.763 | 0.017 | 0.131 | ||

SPN | (0.01) | - | 0.038 | 0.61 | - | 0.877 | (0.001) 0.015 | (0.001) 0.106 | |

(0.02) | - | 0.49 | 0.774 | ||||||

Rec | - | 0.006 | - | 0.044 | 0.812 | 0.074 | 0.070 | ||

Other attacks the algorithm can resist | MF, FS, FA, FI, MPEG-2, and H.264 | - | MF, Rtt, and Scl | LM, Blu, Shp, and H.264 | Scl, CE, FA, FD, and H.264 | AF, H.264, and H.265 | AF, H.264, and H.265 |

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Yu, X.; Wang, C.; Zhou, X.
A Survey on Robust Video Watermarking Algorithms for Copyright Protection. *Appl. Sci.* **2018**, *8*, 1891.
https://doi.org/10.3390/app8101891

**AMA Style**

Yu X, Wang C, Zhou X.
A Survey on Robust Video Watermarking Algorithms for Copyright Protection. *Applied Sciences*. 2018; 8(10):1891.
https://doi.org/10.3390/app8101891

**Chicago/Turabian Style**

Yu, Xiaoyan, Chengyou Wang, and Xiao Zhou.
2018. "A Survey on Robust Video Watermarking Algorithms for Copyright Protection" *Applied Sciences* 8, no. 10: 1891.
https://doi.org/10.3390/app8101891