Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (177)

Search Parameters:
Keywords = copyright protection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1751 KiB  
Article
Robust JND-Guided Video Watermarking via Adaptive Block Selection and Temporal Redundancy
by Antonio Cedillo-Hernandez, Lydia Velazquez-Garcia, Manuel Cedillo-Hernandez, Ismael Dominguez-Jimenez and David Conchouso-Gonzalez
Mathematics 2025, 13(15), 2493; https://doi.org/10.3390/math13152493 - 3 Aug 2025
Viewed by 199
Abstract
This paper introduces a robust and imperceptible video watermarking framework designed for blind extraction in dynamic video environments. The proposed method operates in the spatial domain and combines multiscale perceptual analysis, adaptive Just Noticeable Difference (JND)-based quantization, and temporal redundancy via multiframe embedding. [...] Read more.
This paper introduces a robust and imperceptible video watermarking framework designed for blind extraction in dynamic video environments. The proposed method operates in the spatial domain and combines multiscale perceptual analysis, adaptive Just Noticeable Difference (JND)-based quantization, and temporal redundancy via multiframe embedding. Watermark bits are embedded selectively in blocks with high perceptual masking using a QIM strategy, and the corresponding DCT coefficients are estimated directly from the spatial domain to reduce complexity. To enhance resilience, each bit is redundantly inserted across multiple keyframes selected based on scene transitions. Extensive simulations over 21 benchmark videos (CIF, 4CIF, HD) validate that the method achieves superior performance in robustness and perceptual quality, with an average Bit Error Rate (BER) of 1.03%, PSNR of 50.1 dB, SSIM of 0.996, and VMAF of 97.3 under compression, noise, cropping, and temporal desynchronization. The system outperforms several recent state-of-the-art techniques in both quality and speed, requiring no access to the original video during extraction. These results confirm the method’s viability for practical applications such as copyright protection and secure video streaming. Full article
(This article belongs to the Section E: Applied Mathematics)
Show Figures

Figure 1

24 pages, 1294 KiB  
Article
Confidential Smart Contracts and Blockchain to Implement a Watermarking Protocol
by Franco Frattolillo
Future Internet 2025, 17(8), 352; https://doi.org/10.3390/fi17080352 - 1 Aug 2025
Viewed by 137
Abstract
Watermarking protocols represent a possible solution to the problem of digital copyright protection of content distributed on the Internet. Their implementations, however, continue to be a complex problem due to the difficulties researchers encounter in proposing secure, easy-to-use and, at the same time, [...] Read more.
Watermarking protocols represent a possible solution to the problem of digital copyright protection of content distributed on the Internet. Their implementations, however, continue to be a complex problem due to the difficulties researchers encounter in proposing secure, easy-to-use and, at the same time, “trusted third parties” (TTPs)-free solutions. In this regard, implementations based on blockchain and smart contracts are among the most advanced and promising, even if they are affected by problems regarding the performance and privacy of the information exchanged and processed by smart contracts and managed by blockchains. This paper presents a watermarking protocol implemented by smart contracts and blockchain. The protocol uses a “layer-2” blockchain execution model and performs the computation in “trusted execution environments” (TEEs). Therefore, its implementation can guarantee efficient and confidential execution without compromising ease of use or resorting to TTPs. The protocol and its implementation can, thus, be considered a valid answer to the “trilemma” that afflicts the use of blockchains, managing to guarantee decentralization, security, and scalability. Full article
Show Figures

Figure 1

23 pages, 486 KiB  
Article
Copyright Implications and Legal Responses to AI Training: A Chinese Perspective
by Li You and Han Luo
Laws 2025, 14(4), 43; https://doi.org/10.3390/laws14040043 - 23 Jun 2025
Viewed by 1655
Abstract
The emergence of generative AI presents complex challenges to existing copyright regimes, particularly concerning the large-scale use of copyrighted materials in model training. Legal disputes across jurisdictions highlight the urgent need for a balanced, principle-based framework that protects the rights of creators while [...] Read more.
The emergence of generative AI presents complex challenges to existing copyright regimes, particularly concerning the large-scale use of copyrighted materials in model training. Legal disputes across jurisdictions highlight the urgent need for a balanced, principle-based framework that protects the rights of creators while fostering innovation. In China, a regulatory approach of “moderate leniency” has emerged—emphasizing control over downstream AI-generated content (AIGC) while adopting a more permissive stance toward upstream training. This model upholds the idea–expression dichotomy, rejecting theories such as “retained expression” or “retained style”, which improperly equate ideas with expressions. A critical legal distinction lies between real-time training, which is ephemeral and economically insignificant, and non-real-time training, which involves data retention and should be assessed under fair use test. A fair use exception specific to AI training is both timely and justified, provided it ensures equitable sharing of technological benefits and addresses AIGC’s potential substitutive impact on original works. Furthermore, technical processes like format conversion and machine translation do not infringe derivative rights, as they lack human creativity and expressive content. Even when training involves broader use, legitimacy may be established through the principle of technical necessity within the reproduction right framework. Full article
17 pages, 2418 KiB  
Review
Bibliometric Analysis of Digital Watermarking Based on CiteSpace
by Maofeng Weng, Wei Qu, Eryong Ma, Mingkang Wu, Yuxin Dong and Xu Xi
Symmetry 2025, 17(6), 871; https://doi.org/10.3390/sym17060871 - 3 Jun 2025
Viewed by 466
Abstract
Symmetries and symmetry-breaking play significant roles in data security. Digital watermarking is widely employed in information security fields such as copyright protection and traceability. With the continuous advancement of technology, the research into and application of digital watermarking face numerous challenges. To gain [...] Read more.
Symmetries and symmetry-breaking play significant roles in data security. Digital watermarking is widely employed in information security fields such as copyright protection and traceability. With the continuous advancement of technology, the research into and application of digital watermarking face numerous challenges. To gain a comprehensive understanding of the current research status and trends in the development of digital watermarking, this paper conducts a bibliometric analysis using the CiteSpace software, focusing on 8621 publications related to digital watermarking (watermark/watermarking) from the Web of Science (WOS) Core Collection database, spanning from 2004 to 2024. This study explores the research landscape and future trends in digital watermarking from various perspectives, including annual publication volume, keyword co-occurrence and burst detection, leading authors, research institutions, and publishing countries or regions. The results reveal a regional concentration of research efforts, with early research being primarily dominated by the United States, Taiwan, and South Korea, while recent years have seen a rapid rise in research from China and India. However, global academic collaboration remains relatively fragmented and lacks a well-integrated international research network. Keyword analysis indicates that research hotspots have expanded from traditional copyright protection to data integrity verification, multimedia watermarking, and the incorporation of intelligent technologies. Notably, the introduction of deep learning has propelled watermarking algorithms toward greater sophistication and intelligence. Using CiteSpace, this study is the first to systematically illustrate the dynamic evolution of digital watermarking research over the past 20 years, focusing on thematic trends and regional distributions. Unlike previous reviews that rely mainly on qualitative analyses, this study offers a quantitative and visualized perspective. These findings provide concrete references for the future development of more targeted research efforts. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

22 pages, 2541 KiB  
Article
Channel Interaction Mamba-Guided Generative Adversarial Network for Depth-Image-Based Rendering 3D Image Watermarking
by Qingmo Chen, Zhongxing Sun, Rui Bai and Chongchong Jin
Electronics 2025, 14(10), 2050; https://doi.org/10.3390/electronics14102050 - 18 May 2025
Viewed by 468
Abstract
In the field of 3D technology, depth-image-based rendering (DIBR) has been widely adopted due to its inherent advantages including low data volume and strong compatibility. However, during network transmission of DIBR 3D images, both center and virtual views are susceptible to unauthorized copying [...] Read more.
In the field of 3D technology, depth-image-based rendering (DIBR) has been widely adopted due to its inherent advantages including low data volume and strong compatibility. However, during network transmission of DIBR 3D images, both center and virtual views are susceptible to unauthorized copying and distribution. To protect the copyright of these images, this paper proposes a channel interaction mamba-guided generative adversarial network (CIMGAN) for DIBR 3D image watermarking. To capture cross-modal feature dependencies, a channel interaction mamba (CIM) is designed. This module enables lightweight cross-modal channel interaction through a channel exchange mechanism and leverages mamba for global modeling of RGB and depth information. In addition, a feature fusion module (FFM) is devised to extract complementary information from cross-modal features and eliminate redundant information, ultimately generating high-quality 3D image features. These features are used to generate an attention map, enhancing watermark invisibility and identifying robust embedding regions. Compared to the current state-of-the-art (SOTA) 3D image watermarking methods, the proposed watermark model shows superior performance in terms of robustness and invisibility while maintaining computational efficiency. Full article
Show Figures

Figure 1

27 pages, 6725 KiB  
Article
SIR-DCGAN: An Attention-Guided Robust Watermarking Method for Remote Sensing Image Protection Using Deep Convolutional Generative Adversarial Networks
by Shaoliang Pan, Xiaojun Yin, Mingrui Ding and Pengshuai Liu
Electronics 2025, 14(9), 1853; https://doi.org/10.3390/electronics14091853 - 1 May 2025
Viewed by 731
Abstract
Ensuring the security of remote sensing images is essential to prevent unauthorized access, tampering, and misuse. Deep learning-based digital watermarking offers a promising solution by embedding imperceptible information to protect data integrity. This paper proposes SIR-DCGAN, an attention-guided robust watermarking method for remote [...] Read more.
Ensuring the security of remote sensing images is essential to prevent unauthorized access, tampering, and misuse. Deep learning-based digital watermarking offers a promising solution by embedding imperceptible information to protect data integrity. This paper proposes SIR-DCGAN, an attention-guided robust watermarking method for remote sensing image protection. It incorporates an IR-FFM feature fusion module to enhance feature reuse across different layers and an SE-AM attention mechanism to emphasize critical watermark features. Additionally, a noise simulation sub-network is introduced to improve resistance against common and combined attacks. The proposed method achieves high imperceptibility and robustness while maintaining low computational cost. Extensive experiments on both remote sensing and natural image datasets validate its effectiveness, with performance consistently surpassing existing approaches. These results demonstrate the practicality and reliability of SIR-DCGAN for secure image distribution and copyright protection. Full article
Show Figures

Figure 1

26 pages, 3678 KiB  
Article
Digital Image Copyright Protection and Management Approach—Based on Artificial Intelligence and Blockchain Technology
by Jikuan Xu, Jiamin Zhang and Junhan Wang
J. Theor. Appl. Electron. Commer. Res. 2025, 20(2), 76; https://doi.org/10.3390/jtaer20020076 - 18 Apr 2025
Viewed by 906
Abstract
The issue of image copyright infringement is prevalent in current e-commerce activities. Users employ methods such as image cropping, compression, and noise addition, making it difficult for traditional copyright detection technologies to identify and track infringements. This study proposes an image copyright registration, [...] Read more.
The issue of image copyright infringement is prevalent in current e-commerce activities. Users employ methods such as image cropping, compression, and noise addition, making it difficult for traditional copyright detection technologies to identify and track infringements. This study proposes an image copyright registration, protection, and management method based on artificial intelligence and blockchain technology, aiming to address the current challenges of low accuracy in digital copyright infringement judgment, the vulnerability of image fingerprints stored on the chain to tampering, the complexity of encryption algorithms and key acquisition methods through contract calls, and the secure storage of image information during data circulation. The research combines artificial intelligence technology with traditional blockchain technology to overcome the inherent technical barriers of blockchain. It introduces an originality detection model based on deep learning technology after conducting both off-chain and on-chain detection of unidentified images, providing triple protection for digital image copyright infringement detection and enabling efficient active defense and passive evidence storage. Additionally, the study improves upon the traditional image perceptual hashing in blockchain, which has poor robustness, by adding chaotic encryption sequences to protect the image data on the chain, and its effectiveness has been verified through experiments. Ultimately, the research hopes to provide e-commerce entities with an effective and feasible digital copyright protection and management solution, safeguarding their intellectual property rights and fostering a legal and reasonable competitive environment in e-commerce. Full article
(This article belongs to the Special Issue Blockchain Business Applications and the Metaverse)
Show Figures

Figure 1

15 pages, 694 KiB  
Review
Utility of Nasal Debridement Following Pediatric Functional Endoscopic Sinus Surgery: A Scoping Review
by Jeeho D. Kim, Bastien A. Valencia-Sanchez, Beau Hsia, Saif A. Alshaka, Gabriel Bitar and Vijay A. Patel
Sinusitis 2025, 9(1), 6; https://doi.org/10.3390/sinusitis9010006 - 9 Apr 2025
Viewed by 795
Abstract
The role of second-look endoscopy and debridement (SLED) remains uncertain in children due to the perceived need for additional general anesthesia following their initial functional endoscopic sinus surgery (FESS) while mitigating risks and healthcare costs. This comprehensive review synthesizes current evidence on SLED [...] Read more.
The role of second-look endoscopy and debridement (SLED) remains uncertain in children due to the perceived need for additional general anesthesia following their initial functional endoscopic sinus surgery (FESS) while mitigating risks and healthcare costs. This comprehensive review synthesizes current evidence on SLED in children, focusing on its practice pattern and treatment outcomes. This review was designed and performed using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews Protocol. Independent queries of the PubMed Central, MEDLINE, and Bookshelf databases were performed. A total of 53 relevant, unique articles were initially identified; 12 articles were ultimately deemed appropriate for inclusion in final analysis. The most common indication for FESS was chronic rhinosinusitis or recurrent sinus infections while that for SLED under general anesthesia varied from institutional practice patterns to surgeon preference. No meaningful comparison of outcomes was possible as the “success rates” of FESS with or without SLED were largely based on unvalidated questionnaires and equally subjective surgeon assessments. Even when looking at outcomes based on revision rates, FESS with SLED was considered successful between 60.5% and 95.6% of the time, with a mean of 84.2%, while FESS without SLED was successful between 71.0% to 96.4% of the time, with a mean of 86.3%. However, no randomized, controlled studies were available in the pediatric literature pertaining to FESS with or without SLED. Moreover, it became apparent that previous conclusions on the utility of SLED were based on the outcomes of FESS following one single SLED under general anesthesia vs. no SLED. As such, there is an unmet need to examine the utility of serial, office-based SLED in children to better elucidate its utility in pediatric FESS. Full article
Show Figures

Figure 1

28 pages, 7048 KiB  
Article
ECG Sensor Design Assessment with Variational Autoencoder-Based Digital Watermarking
by Chih-Yu Hsu, Chih-Yin Chang, Yin-Chi Chen, Jasper Wu and Shuo-Tsung Chen
Sensors 2025, 25(7), 2321; https://doi.org/10.3390/s25072321 - 5 Apr 2025
Viewed by 742
Abstract
Designing an ECG sensor circuit requires a comprehensive approach to detect, amplify, filter, and condition the weak electrical signals produced by the heart. To evaluate sensor performance under realistic conditions, diverse ECG signals with embedded watermarks are generated, enabling an assessment of how [...] Read more.
Designing an ECG sensor circuit requires a comprehensive approach to detect, amplify, filter, and condition the weak electrical signals produced by the heart. To evaluate sensor performance under realistic conditions, diverse ECG signals with embedded watermarks are generated, enabling an assessment of how effectively the sensor and its signal-conditioning circuitry handle these modified signals. A Variational Autoencoder (VAE) framework is employed to generate the watermarked ECG signals, addressing critical concerns in the digital era, such as data security, authenticity, and copyright protection. Three watermarking strategies are examined in this study: embedding watermarks in the mean (μ) of the VAE’s latent space, embedding them through the latent variable (z), and using post-reconstruction watermarking in the frequency domain. Experimental results demonstrate that watermarking applied through the mean (μ) and in the frequency domain achieves a low Mean Squared Error (MSE) while maintaining stable signal fidelity across varying watermark strengths (α), latent space dimensions, and noise levels. These findings indicate that the mean (μ) and frequency domain methods offer robust performance and are minimally affected by changes in these parameters, making them particularly suitable for preserving ECG signal quality. By contrasting these methods, this study provides insights into selecting the most appropriate watermarking technique for ECG sensor applications. Incorporating watermarking into sensor design not only strengthens data security and authenticity but also supports reliable signal acquisition in modern healthcare environments. Overall, the results underscore the effectiveness of combining VAEs with watermarking strategies to produce high-fidelity, resilient ECG signals for both sensor performance evaluation and the protection of digital content. Full article
(This article belongs to the Special Issue Biomedical Imaging, Sensing and Signal Processing)
Show Figures

Figure 1

21 pages, 11655 KiB  
Article
A Novel Deep Learning Zero-Watermark Method for Interior Design Protection Based on Image Fusion
by Yiran Peng, Qingqing Hu, Jing Xu, KinTak U and Junming Chen
Mathematics 2025, 13(6), 947; https://doi.org/10.3390/math13060947 - 13 Mar 2025
Viewed by 713
Abstract
Interior design, which integrates art and science, is vulnerable to infringements such as copying and tampering. The unique and often intricate nature of these designs makes them vulnerable to unauthorized replication and misuse, posing significant challenges for designers seeking to protect their intellectual [...] Read more.
Interior design, which integrates art and science, is vulnerable to infringements such as copying and tampering. The unique and often intricate nature of these designs makes them vulnerable to unauthorized replication and misuse, posing significant challenges for designers seeking to protect their intellectual property. To solve the above problems, we propose a deep learning-based zero-watermark copyright protection method. The method aims to embed undetectable and unique copyright information through image fusion technology without destroying the interior design image. Specifically, the method fuses the interior design and a watermark image through deep learning to generate a highly robust zero-watermark image. This study also proposes a zero-watermark verification network with U-Net to verify the validity of the watermark and extract the copyright information efficiently. This network can accurately restore watermark information from protected interior design images, thus effectively proving the copyright ownership of the work and the copyright ownership of the interior design. According to verification on an experimental dataset, the zero-watermark copyright protection method proposed in this study is robust against various image-oriented attacks. It avoids the problem of image quality loss that traditional watermarking techniques may cause. Therefore, this method can provide a strong means of copyright protection in the field of interior design. Full article
(This article belongs to the Special Issue Mathematics Methods in Image Processing and Computer Vision)
Show Figures

Figure 1

9 pages, 6245 KiB  
Article
Multi-Instance Zero-Watermarking Algorithm for Vector Geographic Data
by Qifei Zhou, Lin Yan, Zihao Wang, Na Ren and Changqing Zhu
ISPRS Int. J. Geo-Inf. 2025, 14(2), 54; https://doi.org/10.3390/ijgi14020054 - 30 Jan 2025
Viewed by 778
Abstract
To address the variability and complexity of attack types, this paper proposes a multi-instance zero-watermarking algorithm that goes beyond the conventional one-to-one watermarking approach. Inspired by the class-instance paradigm in object-oriented programming, this algorithm constructs multiple zero watermarks from a single vector geographic [...] Read more.
To address the variability and complexity of attack types, this paper proposes a multi-instance zero-watermarking algorithm that goes beyond the conventional one-to-one watermarking approach. Inspired by the class-instance paradigm in object-oriented programming, this algorithm constructs multiple zero watermarks from a single vector geographic dataset to enhance resilience against diverse attacks. Normalization is applied to eliminate dimensional and deformation inconsistencies, ensuring robustness against non-uniform scaling attacks. Feature triangle construction and angle selection are further utilized to provide resistance to interpolation and compression attacks. Moreover, angular features confer robustness against translation, uniform scaling, and rotation attacks. Experimental results demonstrate the superior robustness of the proposed algorithm, with normalized correlation values consistently maintaining 1.00 across various attack scenarios. Compared with existing methods, the algorithm exhibits superior comprehensive robustness, effectively safeguarding the copyright of vector geographic data. Full article
(This article belongs to the Topic Recent Advances in Security, Privacy, and Trust)
Show Figures

Figure 1

22 pages, 10634 KiB  
Article
Copyright Verification and Traceability for Remote Sensing Object Detection Models via Dual Model Watermarking
by Weitong Chen, Xin Xu, Na Ren, Changqing Zhu and Jie Cai
Remote Sens. 2025, 17(3), 481; https://doi.org/10.3390/rs17030481 - 30 Jan 2025
Cited by 2 | Viewed by 793
Abstract
Deep learning-based remote sensing object detection (RSOD) models have been widely deployed and commercialized. The commercialization of RSOD models requires the ability to protect their intellectual property (IP) across different platforms and sales channels. However, RSOD models currently face threats related to illegal [...] Read more.
Deep learning-based remote sensing object detection (RSOD) models have been widely deployed and commercialized. The commercialization of RSOD models requires the ability to protect their intellectual property (IP) across different platforms and sales channels. However, RSOD models currently face threats related to illegal copying on untrusted platforms or resale by dishonest buyers. To address this issue, we propose a dual-model watermarking scheme for the copyright verification and leakage tracing of RSOD models. First, we construct trigger samples using an object generation watermark trigger and train them alongside clean samples to implement black-box watermarking. Then, fingerprint information is embedded into a small subset of the model’s critical weights, using a fine-tuning and loss-guided approach. At the copyright verification stage, the presence of a black-box watermark can be confirmed through using the suspect model’s API to make predictions on the trigger samples, thereby determining whether the model is infringing. Once infringement is confirmed, fingerprint information can be further extracted from the model weights to identify the leakage source. Experimental results demonstrate that the proposed method can effectively achieve the copyright verification and traceability of RSOD models without affecting the performance of primary tasks. The watermark shows good robustness against fine-tuning and pruning attacks. Full article
Show Figures

Figure 1

30 pages, 5698 KiB  
Article
A Blockchain Copyright Protection Model Based on Vector Map Unique Identification
by Heyan Wang, Nannan Tang, Changqing Zhu, Na Ren and Changhong Wang
ISPRS Int. J. Geo-Inf. 2025, 14(2), 53; https://doi.org/10.3390/ijgi14020053 - 30 Jan 2025
Viewed by 1143
Abstract
Combining blockchain technology with digital watermarking presents an efficient solution for safeguarding vector map files. However, the large data volume and stringent confidentiality requirements of vector maps pose significant challenges for direct registration on blockchain platforms. To overcome these limitations, this paper proposes [...] Read more.
Combining blockchain technology with digital watermarking presents an efficient solution for safeguarding vector map files. However, the large data volume and stringent confidentiality requirements of vector maps pose significant challenges for direct registration on blockchain platforms. To overcome these limitations, this paper proposes a blockchain-based copyright protection model utilizing unique identifiers (BCPM-UI). The model employs a distance ratio-based quantization watermarking algorithm to embed watermark information into vector maps and then generates unique identifiers based on their topological and geometric parameters. These identifiers, rather than the vector maps themselves, are securely registered on the blockchain. To ensure reliable copyright verification, a bit error rate (BER)-based matching algorithm is introduced, enabling accurate comparison between the unique identifiers of suspected infringing data and those stored on the blockchain. Experimental results validate the model’s effectiveness, demonstrating the high uniqueness and robustness of the identifiers generated. Additionally, the proposed approach reduces blockchain storage requirements for map data by a factor of 200, thereby meeting confidentiality standards while maintaining practical applicability in terms of copyright protection for vector maps. Full article
(This article belongs to the Topic Recent Advances in Security, Privacy, and Trust)
Show Figures

Figure 1

23 pages, 3403 KiB  
Article
Class-Hidden Client-Side Watermarking in Federated Learning
by Weitong Chen, Chi Zhang, Wei Zhang and Jie Cai
Entropy 2025, 27(2), 134; https://doi.org/10.3390/e27020134 - 27 Jan 2025
Cited by 1 | Viewed by 1131
Abstract
Federated learning consists of a central aggregator and multiple clients, forming a distributed structure that effectively protects data privacy. However, since all participants can access the global model, the risk of model leakage increases, especially when unreliable participants are involved. To safeguard model [...] Read more.
Federated learning consists of a central aggregator and multiple clients, forming a distributed structure that effectively protects data privacy. However, since all participants can access the global model, the risk of model leakage increases, especially when unreliable participants are involved. To safeguard model copyright while enhancing the robustness and secrecy of the watermark, this paper proposes a client-side watermarking scheme. Specifically, the proposed method introduces an additional watermark class, expanding the output layer of the client model into an N+1-class classifier. The client’s local model is then trained using both the watermark dataset and the local dataset. Notably, before uploading to the server, the parameters of the watermark class are removed from the output layer and stored locally. Additionally, the client uploads amplified parameters to address the potential weakening of the watermark during the aggregation. After aggregation, the global model is distributed to the clients for local training. Through multiple rounds of iteration, the saved watermark parameters are continuously updated until the global model converges. On the MNIST, CIFAR-100, and CIFAR-10 datasets, the watermark detection rates on VGG-16 and ResNet-18 reached 100%. Furthermore, extensive experiments demonstrate that this method has minimal impact on model performance and exhibits strong robustness against pruning and fine-tuning attacks. Full article
(This article belongs to the Special Issue Applications of Information Theory to Machine Learning)
Show Figures

Figure 1

19 pages, 8990 KiB  
Article
Optimizing Image Watermarking with Dual-Tree Complex Wavelet Transform and Particle Swarm Intelligence for Secure and High-Quality Protection
by Abed Al Raoof Bsoul and Alaa Bani Ismail
Appl. Sci. 2025, 15(3), 1315; https://doi.org/10.3390/app15031315 - 27 Jan 2025
Cited by 2 | Viewed by 1152
Abstract
Watermarking is a technique used to address issues related to the widespread use of the internet, such as copyright protection, tamper localization, and authentication. However, most watermarking approaches negatively affect the quality of the original image. In this research, we propose an optimized [...] Read more.
Watermarking is a technique used to address issues related to the widespread use of the internet, such as copyright protection, tamper localization, and authentication. However, most watermarking approaches negatively affect the quality of the original image. In this research, we propose an optimized image watermarking approach that utilizes the dual-tree complex wavelet transform and particle swarm optimization algorithm. Our approach focuses on maintaining the highest possible quality of the watermarked image by minimizing any noticeable changes. During the embedding phase, we break down the original image using a technique called dual-tree complex wavelet transform (DTCWT) and then use particle swarm optimization (PSO) to choose specific coefficients. We embed the bits of a binary logo into the least significant bits of these selected coefficients, creating the watermarked image. To extract the watermark, we reverse the embedding process by first decomposing both versions of the input image using DTCWT and extracting the same coefficients to retrieve those corresponding bits (watermark). In our experiments, we used a common dataset from watermarking research to demonstrate the functionality against various watermarked copies and peak signal-to-noise ratio (PSNR) and normalized cross-correlation (NCC) metrics. The PSNR is a measure of how well the watermarked image maintains its original quality, and the NCC reflects how accurately the watermark can be extracted. Our method gives mean PSNR and NCC of 80.50% and 92.51%, respectively. Full article
(This article belongs to the Special Issue Digital Image Processing: Technologies and Applications)
Show Figures

Figure 1

Back to TopTop