Effect of Steel Fiber and Different Environments on Flexural Behavior of Reinforced Concrete Beams
Abstract
:1. Introduction
1.1. Durability of SFRC
1.2. Comparison of Steel Bar and Steel Fiber Corrosion
1.3. Effect of Steel Fiber on Strength and Toughness of RC Beams in Laboratory Condition
2. Materials and Methods
2.1. Material Properties
2.2. Specimens Test
2.3. Methods
3. Discussion of Results
3.1. Flexural Strength and Toughness of Pre-Cracked (R+S)C Beams in Water and Marine Atmosphere Condition
3.2. Flexural Strength and Toughness of Un-Cracked Beams in Marine Tidal Zone
3.3. Flexural Strength and Toughness of Pre-Cracked Beams in Marine Tidal Zone
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Notations
FRC | Concrete with fiber Reinforcement |
PC | Plain Concrete |
SFRC | Concrete with Steel fiber Reinforcement |
RC | Concrete with bar Reinforcement |
(R+S)C | Concrete with Steel fiber and bar Reinforcement |
Pr | Pre-cracked beam |
Pr-(R+S)C | Pre-cracked Concrete with Steel fiber and bar Reinforcement |
Pr-SFRC | Pre-cracked Concrete with Steel fiber Reinforcement |
Pr-RC | Pre-cracked Concrete with bar Reinforcement |
Un | Un-cracked beam |
Un-(R+S)C | Un-cracked Concrete with Steel fiber and bar Reinforcement |
Un-SFRC | Un-cracked Concrete with Steel fiber Reinforcement |
Un-RC | Un-cracked Concrete with bar Reinforcement |
Ti | Tidal zone |
MA | Marine Atmosphere |
W | fresh Water |
Pmax | maximum load capacity |
T | flexural Toughness |
S.S | Service Stiffness |
fr | Flexural strength |
References
- Alexander, M.G. Marine Concrete Structures: Design, Durability and Performance, 1st ed.; Elsevier Science & Technology: Cambridge, UK, 2016; pp. 65–114. ISBN 0081009054. [Google Scholar]
- Otieno, M.B.; Alexander, M.G. Corrosion in cracked and uncracked concrete—Influence of crack width, concrete quality and crack reopening. Concr. Res. 2010, 62, 393–404. [Google Scholar] [CrossRef]
- Banthia, N.; Gupta, R. Hybrid fiber reinforced concrete (HyFRC): Fiber synergy in high strength matrices. Mater. Struct. 2004, 37, 707–716. [Google Scholar] [CrossRef]
- Banthia, N.; Sappakittipakorn, M. Toughness enhancement in steel fiber reinforced concrete through fiber hybridization. Cem. Concr. Res. 2007, 37, 1366–1372. [Google Scholar] [CrossRef]
- Yoo, D.Y.; Banthia, N.; Yang, J.M.; Yoon, Y.S. Size effect in normal- and high-strength amorphous metallic and steel fiber reinforced concrete beams. Constr. Build. Mater. 2016, 121, 676–685. [Google Scholar] [CrossRef]
- Kim, B.; Boyd, A.J.; Lee, J.Y. Durability performance of fiber-reinforced concrete in severe environments. Compos. Mater. 2011, 45, 2379–2389. [Google Scholar] [CrossRef]
- Vaishali, G.G.; Rao, H.S. Strength and permeability characteristics of fiber reinforced high performance concrete with recycled aggregates. Asian J. Civ. Eng. 2012, 13, 55–77. [Google Scholar]
- Anandan, S.; Manoharan, S.V.; Sengottian, T. Corrosion Effects on the Strength Properties of Steel Fiber Reinforced Concrete Containing Slag and Corrosion Inhibitor. Int. J. Corros. 2014, 2014, 1–7. [Google Scholar] [CrossRef]
- Abbas, S.; Soliman, A.M.; Nehdi, M.L. Exploring mechanical and durability properties of ultrahigh-performance concrete incorporating various steel fiber lengths and dosages. Constr. Build. Mater. 2015, 75, 429–441. [Google Scholar] [CrossRef]
- Janotka, I.; Krajci, L.; Komlos, L.; Frtalova, D. Chloride corrosion of steel fiber reinforcement in cement mortar. Int. J. Cem. Compos. Lightweight Concr. 1989, 11, 221–228. [Google Scholar] [CrossRef]
- Granju, J.L.; Balouch, S.U. Corrosion of steel fiber reinforced concrete from the cracks. Cem. Concr. Res. 2005, 35, 572–577. [Google Scholar] [CrossRef]
- Sadeghi-Pouya, H.; Ganjian, E.; Claisse, P.; Muthuramalingam, K. Corrosion durability of high performance steel fiber reinforced concrete. In Proceedings of the Third International Conference on Sustainable Construction Materials and Technologies, Kyoto, Japan, 18–21 August 2013; Coventry University and the University of Wisconsin Milwaukee Centre for By-Products Utilization: Coventry, UK, 2013. [Google Scholar]
- Mihashi, H.; Ahmed, S.F.; Kobayakawa, A. Corrosion of Reinforcing Steel in Fiber Reinforced Cementitious Composites. Adv. Concr. Technol. 2011, 9, 159–167. [Google Scholar] [CrossRef]
- Söylev, T.A.; Özturan, T. Durability, physical and mechanical properties of fiber-reinforced concrete at low-volume fraction. Constr. Build. Mater. 2014, 73, 67–75. [Google Scholar] [CrossRef]
- Bentur, A.; Mindess, S. Concrete beams reinforced with conventional steel bars and steel fibers: Properties in static loading. Int. J. Cem. Compos. Lightweight Concr. 1983, 5, 199–202. [Google Scholar] [CrossRef]
- Abdul-Ahad, R.B.; Aziz, O.Q. Flexural strength of reinforced concrete T-beams with steel rebars. Cem. Concr. Compos. 1999, 21, 263–268. [Google Scholar] [CrossRef]
- Vandewalle, L. Cracking behavior of concrete beams reinforced with a combination of ordinary reinforcement and steel fibers. Mater. Struct. 2000, 33, 164–170. [Google Scholar] [CrossRef]
- Campione, G.; Mendola, L.L. Behavior in compression of lightweight fiber reinforced concrete confined with transverse steel reinforcement. Cem. Compos. 2004, 26, 645–656. [Google Scholar] [CrossRef]
- Meda, A.; Minelli, F.; Plizzari, G.A. Flexural behavior of RC beams in fiber reinforced concrete. Compos. Part B Eng. 2012, 43, 2930–2937. [Google Scholar] [CrossRef]
- Mertol, H.C.; Baran, E.; Bello, H.J. Flexural behavior of lightly and heavily reinforced steel fiber concrete beams. Constr. Build. Mater. 2015, 98, 185–193. [Google Scholar] [CrossRef]
- Arefi, B. Study Effect of Using Granite Aggregate on Mechanical Properties of Concrete in Aggressive Environmental Conditions. Master’s Thesis, Sistan and Baloochestan University, Zahedan, Iran, 2013. [Google Scholar]
- American Society for Testing and Materials (ASTM). ASTM C78, Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading); American Society for Testing and Materials: West Conshohocken, PA, USA, 2008. [Google Scholar]
- American Society for Testing and Materials (ASTM). ASTM C78, Flexural Performance of Fiber-Reinforced Concrete (Using Beam with Third-Point Loading); American Society for Testing and Materials: West Conshohocken, PA, USA, 2013. [Google Scholar]
- Bencardino, F.; Rizzuti, L.; Spadea, G.; Swamy, R.N. Experimental evaluation of fiber reinforced concrete fracture properties. Compos. Part B Eng. 2010, 41, 17–24. [Google Scholar] [CrossRef]
- Rashiddadash, P.; Ramezanianpour, A.K. Experimental investigation on flexural toughness of hybrid fiber reinforced concrete (HFRC) containing metakaolin and pumice. Constr. Build. Mater. 2014, 51, 313–320. [Google Scholar] [CrossRef]
- Johnston, C.D.; Skarendah, A. Comparative flexural performance evaluation of steel fiber-reinforced concretes according to ASTM C1018 shows importance of fiber parameters. Mater. Struct. 1992, 25, 191–200. [Google Scholar] [CrossRef]
- Frazão, C.; Camões, A.; Barros, J.; Gonçalves, D. Durability of steel fiber reinforced self-compacting concrete. Constr. Build. Mater. 2015, 80, 155–166. [Google Scholar] [CrossRef] [Green Version]
- Thoresen, C.A. Port Designer’s Handbook, 3rd ed.; ICE Publishing: London, UK, 2014; pp. 463–479. ISBN 978-0-7277-6004-3. [Google Scholar]
Mixture Index | Water | Cement | Silica Fume | Fine Agg. | Coarse Agg. | Steel Fiber | SP |
---|---|---|---|---|---|---|---|
(kg/m3) | (%) | ||||||
PC, RC | 160 | 360 | 40 | 758 | 1088 | --- | 1 |
SFRC, (R+S)C | 160 | 360 | 40 | 824 | 996 | 0.5 | 1.2 |
Mixture Index | Environment | Pre-Cracked | Steel Fiber | Steel Bar | ||
---|---|---|---|---|---|---|
Laboratory | Marine Zone | |||||
Water | Atmospheric | Tidal | ||||
PC (Ti) | ✓ | |||||
SFRC (Ti-Un) | ✓ | ✓ | ||||
RC (Ti-Un) | ✓ | ✓ | ||||
(R+S)C (Ti-Un) | ✓ | ✓ | ✓ | |||
SFRC (Ti-Pr) | ✓ | ✓ | ✓ | |||
RC (Ti-Pr) | ✓ | ✓ | ✓ | |||
RC (MA-Pr) | ✓ | ✓ | ✓ | |||
RC (W-Pr) | ✓ | ✓ | ✓ | |||
(R+S)C (Ti-Pr) | ✓ | ✓ | ✓ | ✓ | ||
(R+S)C (MA-Pr) | ✓ | ✓ | ✓ | ✓ | ||
(R+S)C (W-Pr) | ✓ | ✓ | ✓ | ✓ |
Composition | g/L |
---|---|
Cl− | 26.900 |
So3− | 3.800 |
Na+ | 13.100 |
Mg2+ | 1.800 |
Mixture Index | Pmax (kN) | fr (MPa) | ||||
---|---|---|---|---|---|---|
28 (Days) | 90 (Days) | 180 (Days) | 28 (Days) | 90 (Days) | 180 (Days) | |
PC (Ti) | 74.05 | 60.21 | 53.97 | 6.02 | 4.89 | 4.39 |
Variation (%) | 5.61 | 3.24 | 5.65 | 5.61 | 3.24 | 5.65 |
SFRC (Ti-Un) | 108.43 | 80.64 | 67.04 | 8.81 | 6.55 | 5.45 |
Variation (%) | 4.63 | 5.61 | 3.35 | 4.63 | 5.61 | 3.35 |
RC (Ti-Un) | 174.11 | 149.61 | 131.55 | 14.15 | 12.16 | 10.69 |
Variation (%) | 3.12 | 4.41 | 4.25 | 3.12 | 4.41 | 4.25 |
(R+S)C (Ti-Un) | 198.54 | 170.16 | 156.02 | 16.13 | 13.83 | 12.68 |
Variation (%) | 4.15 | 3.31 | 2.59 | 4.15 | 3.31 | 2.59 |
SFRC (Ti-Pr) | 69.66 | 55.55 | 50.44 | 5.66 | 4.51 | 4.10 |
Variation (%) | 2.61 | 2.59 | 3.35 | 2.61 | 2.59 | 3.35 |
RC (Ti-Pr) | 180.03 | 141.65 | 125.29 | 14.63 | 11.51 | 10.18 |
Variation (%) | 4.59 | 6.61 | 2.65 | 4.59 | 6.61 | 2.65 |
RC (MA-Pr) | 174.28 | 148.49 | 144.06 | 14.16 | 12.07 | 11.70 |
Variation (%) | 3.35 | 4.49 | 2.68 | 3.35 | 4.49 | 2.68 |
RC (W-Pr) | 201.39 | 172.08 | 168.90 | 16.36 | 13.98 | 13.72 |
Variation (%) | 3.19 | 2.89 | 3.78 | 3.19 | 2.89 | 3.78 |
(R+S)C (Ti-Pr) | 156.70 | 165.54 | 181.45 | 12.73 | 13.45 | 14.74 |
Variation (%) | 2.61 | 2.65 | 3.65 | 2.61 | 2.65 | 3.65 |
(R+S)C (MA-Pr) | 158.47 | 168.93 | 183.10 | 12.88 | 13.73 | 14.88 |
Variation (%) | 5.41 | 5.42 | 3.25 | 5.41 | 5.42 | 3.25 |
(R+S)C (W-Pr) | 167.01 | 195.11 | 205.78 | 13.57 | 15.85 | 16.72 |
Variation (%) | 2.65 | 3.54 | 1.12 | 2.65 | 3.54 | 1.12 |
Mixture Index | T (N.m) | S.S × 106 (N/m) | ||||
---|---|---|---|---|---|---|
28 (Days) | 90 (Days) | 180 (Days) | 28 (Days) | 90 (Days) | 180 (Days) | |
PC (Ti) | 58.13 | 47.41 | 47.35 | 55.54 | 39.13 | 29.44 |
Variation (%) | 3.12 | 3.18 | 4.15 | 2.61 | 4.51 | 2.68 |
SFRC (Ti-Un) | 398.59 | 292.05 | 290.85 | --- | --- | --- |
Variation (%) | 2.15 | 3.61 | 3.14 | --- | --- | --- |
RC (Ti-Un) | 2178.21 | 1808.36 | 1607.44 | 27.64 | 22.44 | 21.91 |
Variation (%) | 3.15 | 4.16 | 4.78 | 4.65 | 3.23 | 1.25 |
(R+S)C (Ti-Un) | 2434.49 | 2080.40 | 1903.79 | 35.04 | 30.21 | 25.44 |
Variation (%) | 3.25 | 3.14 | 4.16 | 2.58 | 3.46 | 4.53 |
SFRC (Ti-Pr) | 314.68 | 276.10 | 230.50 | --- | --- | --- |
Variation (%) | 2.66 | 2.78 | 3.45 | --- | --- | --- |
RC (Ti-Pr) | 2099.82 | 1712.92 | 1517.75 | 32.15 | 25.14 | 21.48 |
Variation (%) | 1.25 | 2.68 | 2.54 | 3.25 | 2.45 | 2.64 |
RC (MA-Pr) | 2067.02 | 1827.10 | 1749.92 | 24.43 | 23.57 | 21.72 |
Variation (%) | 2.65 | 3.56 | 2.53 | 3.46 | 2.65 | 2.89 |
RC (W-Pr) | 2402.02 | 2048.96 | 2044.09 | 45.09 | 29.67 | 28.90 |
Variation (%) | 5.89 | 5.12 | 4.19 | 2.63 | 5.78 | 2.65 |
(R+S)C (Ti-Pr) | 1873.45 | 2024.83 | 2167.06 | 28.61 | 29.21 | 30.58 |
Variation (%) | 2.63 | 5.46 | 5.63 | 2.65 | 1.89 | 2.65 |
(R+S)C (MA-Pr) | 1913.80 | 2038.86 | 2236.40 | 25.98 | 30.35 | 31.05 |
Variation (%) | 2.43 | 4.56 | 5.26 | 3.19 | 2.14 | 2.56 |
(R+S)C (W-Pr) | 2023.62 | 2339.04 | 2499.11 | 28.31 | 38.76 | 39.94 |
Variation (%) | 2.64 | 3.15 | 1.16 | 2.48 | 2.35 | 2.59 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barkhordari Bafghi, M.A.; Amini, F.; Safaye Nikoo, H.; Sarkardeh, H. Effect of Steel Fiber and Different Environments on Flexural Behavior of Reinforced Concrete Beams. Appl. Sci. 2017, 7, 1011. https://doi.org/10.3390/app7101011
Barkhordari Bafghi MA, Amini F, Safaye Nikoo H, Sarkardeh H. Effect of Steel Fiber and Different Environments on Flexural Behavior of Reinforced Concrete Beams. Applied Sciences. 2017; 7(10):1011. https://doi.org/10.3390/app7101011
Chicago/Turabian StyleBarkhordari Bafghi, Mohammad Ali, Fereydon Amini, Hamed Safaye Nikoo, and Hamed Sarkardeh. 2017. "Effect of Steel Fiber and Different Environments on Flexural Behavior of Reinforced Concrete Beams" Applied Sciences 7, no. 10: 1011. https://doi.org/10.3390/app7101011
APA StyleBarkhordari Bafghi, M. A., Amini, F., Safaye Nikoo, H., & Sarkardeh, H. (2017). Effect of Steel Fiber and Different Environments on Flexural Behavior of Reinforced Concrete Beams. Applied Sciences, 7(10), 1011. https://doi.org/10.3390/app7101011