Abstract
Grape stems are undervalued winemaking by-products that constitute a promising source of bioactive phenolics with notable antioxidant potential and diverse industrial applications, including food preservation, cosmetics, and pharmaceuticals. Effective valorisation of this resource requires not only efficient extraction strategies, but also the strategic selection of grape stem varieties to tailor phenolic profiles for specific high-value uses. In this study, a comparative assessment of three extraction techniques, pressurized liquid extraction (PLE), ultrasound-assisted extraction (UAE), and conventional solid–liquid extraction (SLE), across six grape stem varieties was conducted. By integrating spectrophotometric analyses of total phenolics and antioxidant capacity with HPLC-DAD profiling of individual phenolic compounds, the combined influence of extraction method and varietal composition on phenolic recovery was demonstrated. PLE and UAE significantly enhanced both yield and antioxidant capacity relative to SLE, with PLE providing the broadest spectrum of phenolic compounds. Varietal differences were also pronounced; e.g., Cabernet Sauvignon stems yielded higher antioxidant phenolic compound content, particularly under UAE, reinforcing the importance of aligning extraction technique and stem variety with the intended functional application.