Abstract
Excavation of underground spaces often causes significant initial damage to surrounding rock, which can notably alter its mechanical properties. However, most studies on loading rate effects neglect the role of initial damage. This study investigates how initial damage and loading rate together affect granite’s mechanical behavior and fracturing characteristics. Granite specimens with different initial damage levels were subjected to uniaxial compression at varying loading rates to assess their mechanical parameters, stress thresholds, failure modes, energy evolution, and associated acoustic emission (AE) activity. Results indicate that granite’s mechanical behavior exhibits greater sensitivity to loading rate than to initial damage. As the loading rate increases, both strength and elastic modulus initially decrease and then rise, while the dissipated-to-input energy ratio reaches a maximum when the strength is at its lowest. This phenomenon occurs because, when cracks are allowed to fully develop, a relatively higher loading rate increases the likelihood of crack initiation and propagation, thereby reducing strength. The AE responses of initial damage granite samples (IDGSs), including counts, RA/AF value, b-value, and entropy, exhibit stage-dependent variations and contain precursory information before failure. Moreover, AE signals display multifractal characteristics across different loading rates. These findings reveal the mechanisms underlying granite’s mechanical response when both initial damage and loading rate act together: initial damage primarily affects the complexity and number of local microcracks, while loading rate determines the dominant crack initiation and propagation modes. Moreover, how the failure time of IDGSs varies with loading rate can be described by an inverse exponential function. These findings enhance insight into the coupling mechanism of initial damage and loading rate, with significant implications for failure warning and the cost-effectiveness of underground excavation.