You are currently on the new version of our website. Access the old version .
  • This is an early access version, the complete PDF, HTML, and XML versions will be available soon.
  • Review
  • Open Access

13 January 2026

Uncovering the Security Landscape of Maritime Software-Defined Radios: A Threat Modeling Perspective

,
,
and
1
Department of Computer Science, Sam Houston State University, Huntsville, TX 77340, USA
2
Department of Computer Science, University of North Carolina Wilmington, Wilmington, NC 28403, USA
*
Author to whom correspondence should be addressed.
This article belongs to the Special Issue Data Mining and Machine Learning in Cybersecurity, 2nd Edition

Abstract

Maritime transportation accounts for approximately 80 percent of global trade volume, with modern vessels increasingly reliant on Software-Defined Radio (SDR) technologies for communication and navigation. However, the very flexibility and reconfigurability that make SDRs advantageous also introduce complex radio frequency vulnerabilities exposing ships to threats that jeopardize vessel security, and this disrupts global supply chains. This survey paper systematically examines the security landscape of maritime SDR systems through a threat modeling lens. Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, we analyzed 84 peer-reviewed publications (from 2002 to 2025) and applied the STRIDE framework to identify and categorize maritime SDR threats. We identified 44 distinct threat types, with tampering attacks being most prevalent (36 instances), followed by Denial of Service (33 instances), Repudiation (30 instances), Spoofing (23 instances), Information Disclosure (24 instances), and Elevation of Privilege (28 instances). These threats exploit vulnerabilities across device, software, network, message, and user layers, targeting critical systems including Global Navigation Satellite Systems, Automatic Identification Systems, Very High Frequency or Digital Selective Calling systems, Electronic Chart Display and Information Systems, and National Marine Electronics Association 2000 networks. Our analysis reveals that maritime SDR threats are multidimensional and interdependent, with compromises at any layer potentially cascading through entire maritime operations. Significant gaps remain in authentication mechanisms for core protocols, supply chain assurance, regulatory frameworks, multi-layer security implementations, awareness training, and standardized forensic procedures. Further analysis highlights that securing maritime SDRs requires a proactive security engineering that integrates secured hardware architectural designs, cryptographic authentications, adaptive spectrum management, strengthened international regulations, awareness education, and standardized forensic procedures to ensure resilience and trustworthiness.

Article Metrics

Citations

Article Access Statistics

Article metric data becomes available approximately 24 hours after publication online.