Abstract
The dynamic behavior of relaxed steel wire ropes under slowly varying pulse loads is dominated by the geometric wave impedance effect caused by the helical geometric topology. This study proposes a numerical analysis framework based on high-fidelity parametric solid modeling and implicit dynamics to investigate a Seale-type 6×19S-WSC steel wire rope. Under baseline conditions without pretension and friction, the helical structure forces significant modal conversion and geometric scattering of the axially incident waves, producing an energy attenuation effect akin to “geometric filtering”. Parametric analysis varying the core wire diameter reveals that the helical structure causes the axial wave speed to decrease by orders of magnitude compared to the material’s inherent wave speed. Furthermore, changes in core wire size induce a non-monotonic variation in the dynamic response, revealing a competitive mechanism between overall stiffness increase and a “dynamic decoupling” effect caused by interlayer gaps. This study confirms the dominant role of geometric wave impedance in the dynamic performance of relaxed steel wire ropes.