A ResNet-Based Super-Resolution Approach for Constructing a High-Resolution Temperature Dataset from ERA5 Reanalysis
Abstract
:Featured Application
Abstract
1. Introduction
2. Data
3. Method
3.1. Sub-Pixel Convolution
3.2. ResNet
4. Experiments and Results
4.1. Two-Times Downsampling (0.5° × 0.5° LR Data)
4.2. Fout-Times Downsampling (1° × 1° LR Data)
4.3. Ablation Experiment
4.4. Discussion
5. Conclusions
- Further enhancing the model’s precision in super-resolution tasks. It is widely acknowledged that meteorological data within the same region are correlated [54,55,56,57], such as temperatures at different altitudes, wind fields, and atmospheric humidity. By incorporating multiple feature parameters to describe a more detailed temperature field, the model can extract and learn details that are difficult to discern from single temperature data, thereby yielding more refined SR results.
- In the field of research concerning the super-resolution reconstruction of meteorological data, the reliability of the model’s generalizability has always been a matter of concern [22,58,59,60]. In our future work, we will further discuss the generalizability of the model, with the verification process divided into two parts. Firstly, we will conduct super-resolution experiments using the model on temperature data from different regions, which is also the issue of greatest concern to most researchers. In the selection of regions, we anticipate filtering based on three criteria: the same latitude, the same longitude, and similar topographical conditions. Beyond investigating the generalizability of the model, we will further discuss potential influencing factors. Secondly, within the same region, we will use the model to perform super-resolution reconstruction on different meteorological data to evaluate its effectiveness. As mentioned previously, meteorological data exhibit physical correlations. Can the model learn this correlation by extracting feature information from the temperature field? Using a model trained on temperature data for the super-resolution reconfiguration task of humidity data, we believe this is an interesting question that merits further research.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hsiang, S.M.; Burke, M. Climate, conflict, and social stability: What does the evidence say? Clim. Change 2014, 123, 39–55. [Google Scholar] [CrossRef]
- Raymond, C.; Horton, R.M.; Zscheischler, J.; Martius, O.; AghaKouchak, A.; Balch, J.; Bowen, S.G.; Camargo, S.J.; Hess, J.; Kornhuber, K.; et al. Understanding and managing connected extreme events. Nat. Clim. Change 2020, 10, 611–621. [Google Scholar] [CrossRef]
- Morss, R.E.; Wilhelmi, O.V.; Meehl, G.A.; Dilling, L. Improving societal outcomes of extreme weather in a changing climate: An integrated perspective. Annu. Rev. Environ. Resour. 2011, 36, 1–25. [Google Scholar] [CrossRef]
- Riebsame, W.E.; Diaz, H.F.; Moses, T.; Price, M. The social burden of weather and climate hazards. Bull. Am. Meteorol. Soc. 1986, 67, 1378–1388. [Google Scholar] [CrossRef]
- Nsabagwa, M.; Byamukama, M.; Kondela, E.; Otim, J.S. Towards a robust and affordable Automatic Weather Station. Dev. Eng. 2019, 4, 100040. [Google Scholar] [CrossRef]
- Munandar, A.; Fakhrurroja, H.; Rizqyawan, M.I.; Pratama, R.P.; Wibowo, J.W.; Anto, I.A.F. Design of real-time weather monitoring system based on mobile application using automatic weather station. In Proceedings of the 2017 2nd International Conference on Automation, Cognitive Science, Optics, Micro Electro-Mechanical System, and Information Technology (ICACOMIT), Jakarta, Indonesia, 23–24 October 2017; IEEE: Piscataway, NJ, USA; pp. 44–47. [Google Scholar]
- Gutman, S.I.; Benjamin, S.G. The role of ground-based GPS meteorological observations in numerical weather prediction. GPS Solut. 2001, 4, 16–24. [Google Scholar] [CrossRef]
- Beltrami, H. On the relationship between ground temperature histories and meteorological records: A report on the Pomquet station. Glob. Planet. Change 2001, 29, 327–348. [Google Scholar] [CrossRef]
- National Research Council; Division on Earth, Life Studies; Board on Atmospheric Sciences; Committee on Developing Mesoscale Meteorological Observational Capabilities to Meet Multiple National Needs. Observing Weather and Climate from the Ground Up: A Nationwide Network of Networks; National Academies Press: Washington, DC, USA, 2009. [Google Scholar]
- China Meteorological Administration: China Has Basically Built the World’s Largest Comprehensive Meteorological Observation System. Available online: https://www.cma.gov.cn/ztbd/2022zt/20220929/2022092605/202209/t20220929_5113153.html (accessed on 15 December 2024).
- Monthly Station Observation Data Set of Meteorological Elements in China. Available online: https://www.resdc.cn/data.aspx?DATAID=349 (accessed on 27 December 2024).
- Du, Y.; Zhang, Q.; Chen, Y.L.; Zhao, Y.; Wang, X. Numerical simulations of spatial distributions and diurnal variations of low-level jets in China during early summer. J. Clim. 2014, 27, 5747–5767. [Google Scholar] [CrossRef]
- Kong, H.; Zhang, Q.; Du, Y.; Zhang, F. Characteristics of coastal low-level jets over Beibu Gulf, China, during the early warm season. J. Geophys. Res. Atmos. 2020, 125, e2019JD031918. [Google Scholar] [CrossRef]
- Charney, J.G.; Fjörtoft, R.; Neumann, J.V. Numerical integration of the barotropic vorticity equation. Tellus 1950, 2, 237–254. [Google Scholar] [CrossRef]
- Han, D. Comparison of Commonly Used Image Interpolation Methods. In Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013); Atlantis Press: Paris, France, 2013; pp. 1556–1559. [Google Scholar]
- Bretherton, F.P.; Davis, R.E.; Fandry, C.B. A technique for objective analysis and design of oceanographic experiments applied to MODE-73. In Deep Sea Research and Oceanographic Abstracts; Elsevier: Amsterdam, The Netherlands, 1976; Volume 23, pp. 559–582. [Google Scholar]
- Farsiu, S.; Robinson, D.; Elad, M.; Milanfar, P. Advances and challenges in super-resolution. Int. J. Imaging Syst. Technol. 2004, 14, 47–57. [Google Scholar] [CrossRef]
- Park, S.C.; Park, M.K.; Kang, M.G. Super-resolution image reconstruction: A technical overview. IEEE Signal Process. Mag. 2003, 20, 21–36. [Google Scholar] [CrossRef]
- Vandal, T.; Kodra, E.; Ganguly, S.; Michaelis, A.; Nemani, R.; Ganguly, A.R. Generating high resolution climate change projections through single image super-resolution: An abridged version. In Proceedings of the International Joint Conferences on Artificial Intelligence Organization, Stockholm, Sweden, 13–19 July 2018. [Google Scholar]
- Ping, B.; Su, F.; Han, X.; Meng, Y. Applications of deep learning-based super-resolution for sea surface temperature reconstruction. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 14, 887–896. [Google Scholar] [CrossRef]
- Khoo, J.J.D.; Lim, K.H.; Pang, P.K. Deep learning super resolution of sea surface temperature on South China Sea. In Proceedings of the the 2022 International Conference on Green Energy, Computing and Sustainable Technology (GECOST), Miri Sarawak, Malaysia, 26–28 October 2022; IEEE: Piscataway, NJ, USA; pp. 176–180. [Google Scholar]
- Jiang, P.; Yang, Z.; Wang, J.; Huang, C.; Xue, P.; Chakraborty, T.C.; Chen, X.; Qian, Y. Efficient Super-Resolution of Near-Surface Climate Modeling Using the Fourier Neural Operator. J. Adv. Model. Earth Syst. 2023, 15, e2023MS003800. [Google Scholar] [CrossRef]
- Wang, Y.; Karimi, H.A.; Jia, X. Continuous Super-Resolution of Climate Data Using Time-aware Implicit Neural Representation. Preprints 2023. [Google Scholar] [CrossRef]
- Fanelli, C.; Ciani, D.; Pisano, A.; Buongiorno Nardelli, B. Deep learning for the super resolution of Mediterranean sea surface temperature fields. Ocean Sci. 2024, 20, 1035–1050. [Google Scholar] [CrossRef]
- Martinů, J.; Šimánek, P. Enhancing Weather Predictions: Super-Resolution via Deep Diffusion Models. arXiv 2024, arXiv:2406.04099. [Google Scholar]
- Schneider, K.; Kolomenskiy, D.; Deriaz, E. Is the CFL condition sufficient? Some remarks. In The Courant–Friedrichs–Lewy (CFL) Condition: 80 Years After Its Discovery; Birkhäuser Boston: Boston, MA, USA, 2013; pp. 139–146. [Google Scholar]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Liu, Z.; Berner, J.; Wang, W.; Powers, J.G.; Duda, M.G.; Barker, D.M.; et al. A Description of the Advanced Research WRF Model Version 4; National Center for Atmospheric Research: Boulder, CO, USA, 2019. [Google Scholar]
- Courant, R.; Friedrichs, K.; Lewy, H. Über die partiellen Differenzengleichungen der mathematischen Physik. Math. Ann. 1928, 100, 32–74. [Google Scholar] [CrossRef]
- Wu, G.; Lv, P.; Mao, Y.; Wang, K. ERA5 precipitation over China: Better relative hourly and daily distribution than absolute values. J. Clim. 2024, 37, 1581–1596. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Jiang, Q.; Li, W.; Fan, Z.; He, X.; Sun, W.; Chen, S.; Wen, J.; Gao, J.; Wang, J. Evaluation of the ERA5 reanalysis precipitation dataset over Chinese Mainland. J. Hydrol. 2021, 595, 125660. [Google Scholar] [CrossRef]
- Muñoz-Sabater, J.; Dutra, E.; Agustí-Panareda, A.; Albergel, C.; Arduini, G.; Balsamo, G.; Boussetta, S.; Choulga, M.; Harrigan, S.; Hersbach, H.; et al. ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data 2021, 13, 4349–4383. [Google Scholar] [CrossRef]
- Lavers, D.A.; Simmons, A.; Vamborg, F.; Rodwell, M.J. An evaluation of ERA5 precipitation for climate monitoring. Q. J. R. Meteorol. Soc. 2022, 148, 3152–3165. [Google Scholar] [CrossRef]
- ERA5 Hourly Data on Single Levels from 1940 to Present. Available online: https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=download (accessed on 12 September 2024).
- Wu, Z.; Chen, K.; Ji, P.; Zhao, H.; Sun, X. MSFFT-Net: A multi-scale feature fusion transformer network for underwater image enhancement. J. Vis. Commun. Image Represent. 2025, 107, 104355. [Google Scholar] [CrossRef]
- He, D.; Shi, Q.; Xue, J.; Atkinson, P.M.; Liu, X. Very fine spatial resolution urban land cover mapping using an explicable sub-pixel mapping network based on learnable spatial correlation. Remote Sens. Environ. 2023, 299, 113884. [Google Scholar] [CrossRef]
- Talab, M.A.; Awang, S.; Najim, S.A.D.M. Super-low resolution face recognition using integrated efficient sub-pixel convolutional neural network (ESPCN) and convolutional neural network (CNN). In Proceedings of the 2019 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS), Selangor, Malaysia, 29 June 2019; IEEE: Piscataway, NJ, USA; pp. 331–335. [Google Scholar]
- He, D.; Zhong, Y.; Wang, X.; Zhang, L. Deep convolutional neural network framework for subpixel mapping. IEEE Trans. Geosci. Remote Sens. 2020, 59, 9518–9539. [Google Scholar] [CrossRef]
- Dong, C.; Loy, C.C.; He, K.; Tang, X. Image Super-Resolution Using Deep Convolutional Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 38, 295–307. [Google Scholar] [CrossRef]
- Shi, W.; Caballero, J.; Huszár, F.; Totz, J.; Aitken, A.P.; Bishop, R.; Rueckert, D.; Wang, Z. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1874–1883. [Google Scholar]
- LeCun, Y.; Touresky, D.; Hinton, G.; Sejnowski, T. A theoretical framework for back-propagation. In Proceedings of the 1988 Connectionist Models Summer School; Morgan Kaufmann: Burlington, MA, USA, June 1988; Volume 1, pp. 21–28. [Google Scholar]
- Kaur, G.; Sinha, R.; Tiwari, P.K.; Yadav, S.K.; Pandey, P.; Raj, R.; Vashisth, A.; Rakhra, M. Face mask recognition system using CNN model. Neurosci. Inform. 2022, 2, 100035. [Google Scholar] [CrossRef]
- Lu, J.; Tan, L.; Jiang, H. Review on convolutional neural network (CNN) applied to plant leaf disease classification. Agriculture 2021, 11, 707. [Google Scholar] [CrossRef]
- Yin, W.; Kann, K.; Yu, M.; Schütze, H. Comparative study of CNN and RNN for natural language processing. arXiv 2017, arXiv:1702.01923. [Google Scholar]
- Anumol, C.S. Advancements in CNN Architectures for Computer Vision: A Comprehensive Review. In Proceedings of the 2023 Annual International Conference on Emerging Research Areas: International Conference on Intelligent Systems (AICERA/ICIS), Kanjirapally, India, 16–18 November 2023; IEEE: Piscataway, NJ, USA; pp. 1–7. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Identity mappings in deep residual networks. In Proceedings of the Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Part IV 14. Springer International Publishing: Cham, Switzerland, 2016; pp. 630–645. [Google Scholar]
- Liu, C.; Wang, J.; Wang, J.; Yarahmadi, A. Accurate modeling of crude oil and brine interfacial tension via robust machine learning approaches. Sci. Rep. 2024, 14, 28800. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Shen, C.; Tang, C.; Guo, Z.; Wu, F.; Yang, W. Machine learning-based forecasting of ground surface settlement induced by metro shield tunneling construction. Sci. Rep. 2024, 14, 31795. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Kong, H.; Leung, J.C.H.; Chan, P.W.; Fong, C.; Wang, Y.; Zhang, B. A 1D Convolutional Neural Network (1D-CNN) Temporal Filter for Atmospheric Variability: Reducing the Sensitivity of Filtering Accuracy to Missing Data Points. Appl. Sci. 2024, 14, 6289. [Google Scholar] [CrossRef]
- Pearson, K. VII. Mathematical contributions to the theory of evolution.—III. Regression, heredity, and panmixia. Philosophical Transactions of the Royal Society of London. Ser. A Contain. Pap. A Math. Phys. Character 1896, 187, 253–318. [Google Scholar]
- Huynh-Thu, Q.; Ghanbari, M. Scope of validity of PSNR in image/video quality assessment. Electron. Lett. 2008, 44, 800–801. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef]
- Agbo, E.P.; Edet, C.O. Meteorological analysis of the relationship between climatic parameters: Understanding the dynamics of the troposphere. Theor. Appl. Climatol. 2022, 150, 1677–1698. [Google Scholar] [CrossRef]
- Zhao, S.; Wu, L.; Xiang, Y.; Dong, J.; Li, Z.; Liu, X.; Tang, Z.; Wang, H.; Wang, X.; An, J.; et al. Coupling meteorological stations data and satellite data for prediction of global solar radiation with machine learning models. Renew. Energy 2022, 198, 1049–1064. [Google Scholar] [CrossRef]
- Polanco-Martínez, J.M.; Fernández-Macho, J.; Medina-Elizalde, M. Dynamic wavelet correlation analysis for multivariate climate time series. Sci. Rep. 2020, 10, 21277. [Google Scholar] [CrossRef]
- Ukhurebor, K.E.; Azi, S.O.; Aigbe, U.O.; Onyancha, R.B.; Emegha, J.O. Analyzing the uncertainties between reanalysis meteorological data and ground measured meteorological data. Measurement 2020, 165, 108110. [Google Scholar] [CrossRef]
- Kukreja, V.; Solanki, V.; Baliyan, A.; Jain, V. WeatherNet: Transfer learning-based weather recognition model. In Proceedings of the 2022 International Conference on Emerging Smart Computing and Informatics (ESCI), Pune, India, 9–11 March 2022; pp. 1–5. [Google Scholar]
- Pal, S.K.; Dutta, D. Transfer Learning in Weather Prediction: Why, How, and What Should. J. Comput. Cogn. Eng. 2024, 3, 324–347. [Google Scholar] [CrossRef]
- Ho, J.; Jain, A.; Abbeel, P. Denoising diffusion probabilistic models. Adv. Neural Inf. Process. Syst. 2020, 33, 6840–6851. [Google Scholar]
Model | RMSE | MAE | MAPE | Corr | PSNR | SSIM |
---|---|---|---|---|---|---|
Single-Time (0.5° × 0.5°) | 0.2897 | 0.1711 | 0.0625 | 0.9997 | 58.8929 | 0.9721 |
Mean-Time (0.5° × 0.5°) | 0.2866 | 0.1774 | 0.0630 | 0.9995 | 58.7328 | 0.9789 |
Single-Time (1° × 1°) | 0.5168 | 0.3355 | 0.1221 | 0.9991 | 53.8646 | 0.9465 |
Mean-Time (1° × 1°) | 0.5286 | 0.3498 | 0.1242 | 0.9989 | 53.5304 | 0.9589 |
Model | RMSE | MAE | MAPE | Corr | PSNR | SSIM |
---|---|---|---|---|---|---|
CNN | 0.4075 | 0.2946 | 0.1064 | 0.9873 | 53.0385 | 0.9584 |
2-Residual Blocks | 0.2916 | 0.1874 | 0.0840 | 0.9985 | 58.5250 | 0.9641 |
4-Residual Blocks | 0.2774 | 0.1837 | 0.0824 | 0.9991 | 58.6461 | 0.9635 |
8-Residual Blocks | 0.2897 | 0.1711 | 0.0625 | 0.9997 | 58.8929 | 0.9721 |
Model | RMSE | PSNR | SSIM |
---|---|---|---|
Bilinear interpolation | 0.5644 | 52.7789 | 0.9415 |
LASSO | 0.5426 | 53.1317 | 0.9465 |
SVM | 0.5835 | 52.5193 | 0.9379 |
CNN | 0.4075 | 53.0385 | 0.9584 |
ResNet-Subpixel | 0.2897 | 58.8929 | 0.9721 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Kong, H.; Wang, Y.; Wong, C.-S.; Du, Y.; Wang, P. A ResNet-Based Super-Resolution Approach for Constructing a High-Resolution Temperature Dataset from ERA5 Reanalysis. Appl. Sci. 2025, 15, 5013. https://doi.org/10.3390/app15095013
Li Z, Kong H, Wang Y, Wong C-S, Du Y, Wang P. A ResNet-Based Super-Resolution Approach for Constructing a High-Resolution Temperature Dataset from ERA5 Reanalysis. Applied Sciences. 2025; 15(9):5013. https://doi.org/10.3390/app15095013
Chicago/Turabian StyleLi, Zijun, Hoiio Kong, Yuchen Wang, Chan-Seng Wong, Yu Du, and Peitao Wang. 2025. "A ResNet-Based Super-Resolution Approach for Constructing a High-Resolution Temperature Dataset from ERA5 Reanalysis" Applied Sciences 15, no. 9: 5013. https://doi.org/10.3390/app15095013
APA StyleLi, Z., Kong, H., Wang, Y., Wong, C.-S., Du, Y., & Wang, P. (2025). A ResNet-Based Super-Resolution Approach for Constructing a High-Resolution Temperature Dataset from ERA5 Reanalysis. Applied Sciences, 15(9), 5013. https://doi.org/10.3390/app15095013