Disease Detection Algorithm for Tea Health Protection Based on Improved Real-Time Detection Transformer
Abstract
:1. Introduction
2. Related Work
2.1. Plant Disease Detection Method
2.2. RT-DETR Technology and Analysis
3. Materials and Methods
3.1. Overview of the Proposed Method
3.2. Faster-LTNet
3.3. CG Attention Module
3.4. RMT Spatial Prior Block
4. Experiment and Evaluations
4.1. Dataset
4.2. Data Processing
4.3. Experimental Environment and Parameters
4.4. Experimental Results
4.4.1. Comparative Experiment
4.4.2. Ablation Experiment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Suroso, A.I.; Abdullah, A.; Haryono, A.; Tandra, H. The potential of China’s tea trade and how it affects China’s economic growth. J. Int. Trade Econ. Dev. 2024, 1–22. [Google Scholar] [CrossRef]
- Saleem, M.H.; Potgieter, J.; Arif, K.M. Plant disease detection and classification by deep learning. Plants 2019, 8, 468. [Google Scholar] [CrossRef] [PubMed]
- Shinde, S.V.; Lahade, S. Deep Learning for Tea Leaf Disease Classification: Challenges, Study Gaps, and Emerging Technologies. In Applied Computer Vision and Soft Computing with Interpretable AI; Chapman and Hall/CRC: Boca Raton, FL, USA, 2024; pp. 293–314. [Google Scholar]
- Miao, S.; Wei, Y.; Pan, Y.; Wang, Y.; Wei, X. Detection methods, migration patterns, and health effects of pesticide residues in tea. Compr. Rev. Food Sci. Food Saf. 2023, 22, 2945–2976. [Google Scholar] [CrossRef]
- Ihsan, C.N.; Agustina, N.; Naseer, M.; Gusdevi, H.; Rusdi, J.F.; Hadhiwibowo, A.; Abdullah, F. Comparison of Machine Learning Algorithms in Detecting Tea Leaf Diseases. J. RESTI 2024, 8, 135–141. [Google Scholar] [CrossRef]
- Wang, H.; Gu, J.; Wang, M. A review on the application of computer vision and machine learning in the tea industry. Front. Sustain. Food Syst. 2023, 7, 1172543. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1–9. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Schor, N.; Bechar, A.; Ignat, T.; Dombrovsky, A.; Elad, Y.; Berman, S. Robotic disease detection in greenhouses: Combined detection of powdery mildew and tomato spotted wilt virus. IEEE Robot. Autom. Lett. 2016, 1, 354–360. [Google Scholar] [CrossRef]
- Zhang, P.; Yang, L.; Li, D. EfficientNet-B4-Ranger: A novel method for greenhouse cucumber disease recognition under natural complex environment. Comput. Electron. Agric. 2020, 176, 105652. [Google Scholar] [CrossRef]
- Kumar, M.; Kumar, A.; Palaparthy, V.S. Soil sensors-based prediction system for plant diseases using exploratory data analysis and machine learning. IEEE Sens. J. 2020, 21, 17455–17468. [Google Scholar] [CrossRef]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Proceedings, Part I 14; Springer International Publishing: Berlin/Heidelberg, Germany, 2016; pp. 21–37. [Google Scholar]
- Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar]
- Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125. [Google Scholar]
- Ma, J.; Du, K.; Zheng, F.; Zhang, L.; Gong, Z.; Sun, Z. A recognition method for cucumber diseases using leaf symptom images based on deep convolutional neural network. Comput. Electron. Agric. 2018, 154, 18–24. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, H.; Peng, Z. Rice diseases detection and classification using attention based neural network and bayesian optimization. Expert Syst. Appl. 2021, 178, 114770. [Google Scholar] [CrossRef]
- Chen, J.; Chen, J.; Zhang, D.; Nanehkaran, Y.A.; Sun, Y. A cognitive vision method for the detection of plant disease images. Mach. Vis. Appl. 2021, 32, 1–18. [Google Scholar] [CrossRef]
- Liu, J.; Wang, X. Tomato diseases and pests detection based on improved Yolo V3 convolutional neural network. Front. Plant Sci. 2020, 11, 898. [Google Scholar] [CrossRef]
- Qi, J.; Liu, X.; Liu, K.; Xu, F.; Guo, H.; Tian, X.; Li, M.; Bao, Z.; Li, Y. An improved YOLOv5 model based on visual attention mechanism: Application to recognition of tomato virus disease. Comput. Electron. Agric. 2022, 194, 106780. [Google Scholar] [CrossRef]
- Rahman, C.R.; Arko, P.S.; Ali, M.E.; Khan, M.A.I.; Apon, S.H.; Nowrin, F.; Wasif, A. Identification and recognition of rice diseases and pests using convolutional neural networks. Biosyst. Eng. 2020, 194, 112–120. [Google Scholar] [CrossRef]
- Wu, Q.; Chen, Y.; Meng, J. DCGAN-based data augmentation for tomato leaf disease identification. IEEE Access 2020, 8, 98716–98728. [Google Scholar] [CrossRef]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. Adv. Neural Inf. Process. Syst. 2014, 27. [Google Scholar]
- Zhou, C.; Zhou, S.; Xing, J.; Song, J. Tomato leaf disease identification by restructured deep residual dense network. IEEE Access 2021, 9, 28822–28831. [Google Scholar] [CrossRef]
- Ozguven, M.M.; Adem, K. Automatic detection and classification of leaf spot disease in sugar beet using deep learning algorithms. Phys. A Stat. Mech. Its Appl. 2019, 535, 22537. [Google Scholar] [CrossRef]
- Kong, Y.; Shang, X.; Jia, S. Drone-DETR: Efficient small object detection for remote sensing image using enhanced RT-DETR model. Sensors 2024, 24, 5496. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Ma, Z.; Li, X. RS-DETR: An Improved Remote Sensing Object Detection Model Based on RT-DETR. Appl. Sci. 2024, 14, 10331. [Google Scholar] [CrossRef]
- Yu, C.; Chen, X. Railway rutting defects detection based on improved RT-DETR. J. Real-Time Image Process. 2024, 21, 146. [Google Scholar] [CrossRef]
- Li, X.; Cai, M.; Tan, X.; Yin, C.; Chen, W.; Liu, Z.; Wen, J.; Han, Y. An efficient transformer network for detecting multi-scale chicken in complex free-range farming environments via improved RT-DETR. Comput. Electron. Agric. 2024, 224, 109160. [Google Scholar] [CrossRef]
- Zhao, Z.; Chen, S.; Ge, Y.; Yang, P.; Wang, Y.; Song, Y. Rt-detr-tomato: Tomato target detection algorithm based on improved rt-detr for agricultural safety production. Appl. Sci. 2024, 14, 6287. [Google Scholar] [CrossRef]
- Peng, H.; Chen, S. FedsNet: The real-time network for pedestrian detection based on RT-DETR. J. Real-Time Image Process. 2024, 21, 142. [Google Scholar] [CrossRef]
- Chen, J.; Kao, S.H.; He, H.; Zhuo, W.; Wen, S.; Lee, C.H.; Chan, S.H.G. Run, don’t walk: Chasing higher FLOPS for faster neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 12021–12031. [Google Scholar]
- Liu, X.; Peng, H.; Zheng, N.; Yang, Y.; Hu, H.; Yuan, Y. Efficientvit: Memory efficient vision transformer with cascaded group attention. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 14420–14430. [Google Scholar]
- Sun, Y.; Dong, L.; Huang, S.; Ma, S.; Xia, Y.; Xue, J.; Wang, J.; Wei, F. Retentive network: A successor to transformer for large language models. arXiv 2023, arXiv:2307.08621. [Google Scholar]
- Fan, Q.; Huang, H.; Chen, M.; Liu, H.; He, R. Rmt: Retentive networks meet vision transformers. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 16–22 June 2024; pp. 5641–5651. [Google Scholar]
- Zhao, Y.; Lv, W.; Xu, S.; Wei, J.; Wang, G.; Dang, Q.; Liu, Y.; Chen, J. Detrs beat yolos on real-time object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 16–22 June 2024; pp. 16965–16974. [Google Scholar]
- Woo, S.; Debnath, S.; Hu, R.; Chen, X.; Liu, Z.; Kweon, I.S.; Xie, S. Convnext v2: Co-designing and scaling convnets with masked autoencoders. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 16133–16142. [Google Scholar]
- Li, Y.; Hou, Q.; Zheng, Z.; Cheng, M.M.; Yang, J.; Li, X. Large selective kernel network for remote sensing object detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Vancouver, BC, Canada, 17–24 June 2023; pp. 16794–16805. [Google Scholar]
- Wang, A.; Chen, H.; Lin, Z.; Han, J.; Ding, G. Repvit: Revisiting mobile cnn from vit perspective. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 16–22 June 2024; pp. 15909–15920. [Google Scholar]
- Li, Y.; Hu, J.; Wen, Y.; Evangelidis, G.; Salahi, K.; Wang, Y.; Tulyakov, S.; Ren, J. Rethinking vision transformers for mobilenet size and speed. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Vancouver, BC, Canada, 17–24 June 2023; pp. 16889–16900. [Google Scholar]
- Ding, X.; Zhang, Y.; Ge, Y.; Zhao, S.; Song, L.; Yue, X.; Shan, Y. UniRepLKNet: A Universal Perception Large-Kernel ConvNet for Audio Video Point Cloud Time-Series and Image Recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 16–22 June 2024; pp. 5513–5524. [Google Scholar]
- Sun, Y.; Wu, F.; Guo, H.; Li, R.; Yao, J.; Shen, J. TeaDiseaseNet: Multi-scale self-attentive tea disease detection. Front. Plant Sci. 2023, 14, 1257212. [Google Scholar] [CrossRef] [PubMed]
Variety | Training Set | Validation Set | Total |
---|---|---|---|
Red leaf spot | 1135 | 126 | 1261 |
Tea white spot | 1076 | 119 | 1195 |
Tea coal disease | 916 | 101 | 1017 |
Tea brown blight | 997 | 110 | 1107 |
Total | 4124 | 456 | 4580 |
Number | Model | Precision (%) | Recall (%) | mAP50 (%) | mAP50:95 (%) |
---|---|---|---|---|---|
0 | YOLOv5s | 88.63 | 80.88 | 85.81 | 51.62 |
1 | YOLOv7-tiny | 83.61 | 77.59 | 81.28 | 42.96 |
2 | YOLOv7 | 88.78 | 83.17 | 86.94 | 59.27 |
3 | YOLOv7-X | 90.26 | 82.15 | 87.36 | 60.43 |
4 | YOLOv8 | 81.48 | 74.45 | 80.17 | 48.92 |
5 | YOLOv8-P2 | 80.86 | 75.18 | 80.27 | 49.26 |
6 | YOLOv8-P6 | 83.54 | 74.96 | 81.38 | 51.58 |
7 | Ours | 89.20 | 81.90 | 85.80 | 59.30 |
Backbone | Precision | Recall | mAP50 | mAP50:95 | FLOPs | FPS | Params | Size |
---|---|---|---|---|---|---|---|---|
(%) | (%) | (%) | (%) | (G) | (F/S) | (M) | (M) | |
RT-DETR-R18 | 89.00 | 82.50 | 86.40 | 62.40 | 57.00 | 237.40 | 19.88 | 40.50 |
ConvNextV2 | 88.70 | 78.70 | 84.30 | 57.30 | 33.00 | 198.40 | 12.30 | 25.30 |
LSKNet | 87.70 | 81.20 | 85.80 | 60.70 | 38.70 | 154.80 | 12.77 | 26.00 |
EfficientViT | 88.50 | 80.30 | 85.10 | 60.00 | 27.20 | 288.10 | 10.71 | 22.80 |
RepViT | 86.50 | 79.30 | 83.10 | 58.00 | 35.30 | 234.30 | 13.31 | 27.70 |
EfficientFormerV2 | 87.90 | 82.50 | 85.60 | 60.40 | 29.50 | 185.40 | 11.80 | 75.80 |
UniRepLKNet | 87.20 | 79.50 | 83.40 | 55.90 | 33.40 | 197.40 | 12.71 | 26.80 |
Ours | 88.90 | 80.30 | 85.60 | 59.90 | 28.50 | 350.70 | 10.81 | 21.30 |
Model | Precision | Recall | mAP50 | mAP50:95 | FLOPs | FPS | Params | Size |
---|---|---|---|---|---|---|---|---|
(%) | (%) | (%) | (%) | (G) | (F/S) | (M) | (M) | |
RT-DETR-R18 | 88.20 | 82.30 | 85.90 | 61.80 | 57.00 | 221.30 | 19.88 | 40.20 |
Ours | 88.90 | 81.70 | 85.40 | 58.70 | 28.30 | 335.60 | 10.30 | 20.30 |
Faster-LTNet | CG Attention Module | RMT Spatial Prior Block | Precision | Recall | mAP50 | mAP50:95 | FLOPs | FPS | Params | Size |
---|---|---|---|---|---|---|---|---|---|---|
(%) | (%) | (%) | (%) | (G) | (F/S) | (M) | (M) | |||
89.00 | 82.50 | 86.40 | 62.40 | 57.00 | 237.40 | 19.88 | 40.50 | |||
✓ | 88.90 | 80.30 | 85.60 | 59.90 | 28.50 | 350.70 | 10.81 | 21.30 | ||
✓ | ✓ | 88.40 | 80.90 | 85.10 | 59.80 | 28.60 | 355.20 | 10.64 | 21.10 | |
✓ | ✓ | ✓ | 89.20 | 81.90 | 85.80 | 59.30 | 28.30 | 346.40 | 10.30 | 20.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Z.; Zhu, Z.; Guo, L.; Chen, J.; Wu, J. Disease Detection Algorithm for Tea Health Protection Based on Improved Real-Time Detection Transformer. Appl. Sci. 2025, 15, 2063. https://doi.org/10.3390/app15042063
Lin Z, Zhu Z, Guo L, Chen J, Wu J. Disease Detection Algorithm for Tea Health Protection Based on Improved Real-Time Detection Transformer. Applied Sciences. 2025; 15(4):2063. https://doi.org/10.3390/app15042063
Chicago/Turabian StyleLin, Zhijie, Zilong Zhu, Lingling Guo, Jingjing Chen, and Jiyi Wu. 2025. "Disease Detection Algorithm for Tea Health Protection Based on Improved Real-Time Detection Transformer" Applied Sciences 15, no. 4: 2063. https://doi.org/10.3390/app15042063
APA StyleLin, Z., Zhu, Z., Guo, L., Chen, J., & Wu, J. (2025). Disease Detection Algorithm for Tea Health Protection Based on Improved Real-Time Detection Transformer. Applied Sciences, 15(4), 2063. https://doi.org/10.3390/app15042063