Onion Peel Powder’s Impact on the Leptin Receptors in the Hippocampus of Obese Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Onion
2.2. Animals
2.3. Immunohistochemistry and Antibodies
2.4. The Hippocampus Structure and Topography
2.5. Determination of Leptin Receptor Immunoreactive (LepR-IR) Neuron Number and Size in CA1 Field of Hippocampus
2.6. The Determination of the Density of GFAP-Immunoreactive (GFAP-IR) Astrocytes in the CA1 Field of the Hippocampus
2.7. Statistical Analysis
3. Results
3.1. Body Weight
3.2. Immunohistochemistry
3.3. Leptin Receptor Immunoreactive (LepR-IR) Neurons
3.3.1. The Mean Number of LepR-IR Neurons
3.3.2. The Mean Size of LepR-IR Neurons
3.4. The GFAP-Immunoreactive (GFAP-IR) Astrocytes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Marrelli, M.; Amodeo, V.; Statti, G.; Conforti, F. Biological Properties and Bioactive Components of Allium cepa L.: Focus on Potential Benefits in the Treatment of Obesity and Related Comorbidities. Molecules 2018, 24, 119. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, H.; Hou, K.; Peng, W.; Liu, Z.; Deng, H. Antioxidant and Xanthine Oxidase Inhibitory Activities of Total Polyphenols from Onion. Saudi J. Biol. Sci. 2018, 25, 1509–1513. [Google Scholar] [CrossRef] [PubMed]
- Jakaria, M.; Azam, S.; Cho, D.-Y.; Haque, M.E.; Kim, I.-S.; Choi, D.-K. The Methanol Extract of Allium cepa L. Protects Inflammatory Markers in LPS-Induced BV-2 Microglial Cells and Upregulates the Antiapoptotic Gene and Antioxidant Enzymes in N27-A Cells. Antioxidants 2019, 8, 348. [Google Scholar] [CrossRef] [PubMed]
- Loredana, L.; Giuseppina, A.; Filomena, N.; Florinda, F.; Marisa, D.M.; Donatella, A. Biochemical, Antioxidant Properties and Antimicrobial Activity of Different Onion Varieties in the Mediterranean Area. J. Food Meas. Charact. 2019, 13, 1232–1241. [Google Scholar] [CrossRef]
- Tsuboki, J.; Fujiwara, Y.; Horlad, H.; Shiraishi, D.; Nohara, T.; Tayama, S.; Motohara, T.; Saito, Y.; Ikeda, T.; Takaishi, K.; et al. Onionin A Inhibits Ovarian Cancer Progression by Suppressing Cancer Cell Proliferation and the Protumour Function of Macrophages. Sci. Rep. 2016, 6, 29588. [Google Scholar] [CrossRef]
- Akash, M.S.H.; Rehman, K.; Chen, S. Spice Plant Allium cepa: Dietary Supplement for Treatment of Type 2 Diabetes Mellitus. Nutrition 2014, 30, 1128–1137. [Google Scholar] [CrossRef] [PubMed]
- Jini, D.; Sharmila, S. Green Synthesis of Silver Nanoparticles from Allium cepa and Its in Vitro Antidiabetic Activity. Mater. Today Proc. 2020, 22, 432–438. [Google Scholar] [CrossRef]
- Helen, A.; Krishnakumar, K.; Vijayammal, P.L.; Augusti, K.T. Antioxidant Effect of Onion Oil (Allium cepa Linn) on the Damages Induced by Nicotine in Rats as Compared to Alpha-Tocopherol. Toxicol. Lett. 2000, 116, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Hegazy, E.; Sabry, A.; Khalil, W.K.B. Neuroprotective Effects of Onion and Garlic Root Extractsagainst Alzheimer’s Disease in Rats: Antimicrobial, Histopathological, and Molecular Studies. BioTechnologia 2022, 103, 153–167. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-S.; Cha, Y.-J.; Lee, K.-H.; Yim, J.-E. Onion Peel Extract Reduces the Percentage of Body Fat in Overweight and Obese Subjects: A 12-Week, Randomized, Double-Blind, Placebo-Controlled Study. Nutr. Res. Pract. 2016, 10, 175. [Google Scholar] [CrossRef]
- Gawlik-Dziki, U.; Kaszuba, K.; Piwowarczyk, K.; Świeca, M.; Dziki, D.; Czyż, J. Onion Skin—Raw Material for the Production of Supplement That Enhances the Health-Beneficial Properties of Wheat Bread. Food Res. Int. 2015, 73, 97–106. [Google Scholar] [CrossRef]
- Benítez, V.; Mollá, E.; Martín-Cabrejas, M.A.; Aguilera, Y.; López-Andréu, F.J.; Cools, K.; Terry, L.A.; Esteban, R.M. Characterization of Industrial Onion Wastes (Allium cepa L.): Dietary Fibre and Bioactive Compounds. Plant Foods Hum. Nutr. 2011, 66, 48–57. [Google Scholar] [CrossRef]
- Michalak-Majewska, M.; Złotek, U.; Szymanowska, U.; Szwajgier, D.; Stanikowski, P.; Matysek, M.; Sobota, A. Antioxidant and Potentially Anti-Inflammatory Properties in Pasta Fortified with Onion Skin. Appl. Sci. 2020, 10, 8164. [Google Scholar] [CrossRef]
- Obradovic, M.; Sudar-Milovanovic, E.; Soskic, S.; Essack, M.; Arya, S.; Stewart, A.J.; Gojobori, T.; Isenovic, E.R. Leptin and Obesity: Role and Clinical Implication. Front. Endocrinol. 2021, 12, 585887. [Google Scholar] [CrossRef]
- Kim, O.Y.; Lee, S.; Do, H.; Moon, J.; Lee, K.; Cha, Y.; Shin, M. Influence of Quercetin-rich Onion Peel Extracts on Adipokine Expression in the Visceral Adipose Tissue of Rats. Phytother. Res. 2012, 26, 432–437. [Google Scholar] [CrossRef] [PubMed]
- Banks, W.A. Peptides and the Blood–Brain Barrier. Peptides 2015, 72, 16–19. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.W.; Glendining, K.A.; Grattan, D.R.; Jasoni, C.L. Maternal Obesity in the Mouse Compromises the Blood-Brain Barrier in the Arcuate Nucleus of Offspring. Endocrinology 2016, 157, 2229–2242. [Google Scholar] [CrossRef]
- Fanselow, M.S.; Dong, H.-W. Are the Dorsal and Ventral Hippocampus Functionally Distinct Structures? Neuron 2010, 65, 7–19. [Google Scholar] [CrossRef]
- Van Doorn, C.; Macht, V.A.; Grillo, C.A.; Reagan, L.P. Leptin Resistance and Hippocampal Behavioral Deficits. Physiol. Behav. 2017, 176, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Izquierdo, A.G.; Crujeiras, A.B.; Casanueva, F.F.; Carreira, M.C. Leptin, Obesity, and Leptin Resistance: Where Are We 25 Years Later? Nutrients 2019, 11, 2704. [Google Scholar] [CrossRef] [PubMed]
- Boitard, C.; Etchamendy, N.; Sauvant, J.; Aubert, A.; Tronel, S.; Marighetto, A.; Layé, S.; Ferreira, G. Juvenile, but Not Adult Exposure to High-fat Diet Impairs Relational Memory and Hippocampal Neurogenesis in Mice. Hippocampus 2012, 22, 2095–2100. [Google Scholar] [CrossRef] [PubMed]
- De Paula, G.C.; Brunetta, H.S.; Engel, D.F.; Gaspar, J.M.; Velloso, L.A.; Engblom, D.; De Oliveira, J.; De Bem, A.F. Hippocampal Function Is Impaired by a Short-Term High-Fat Diet in Mice: Increased Blood–Brain Barrier Permeability and Neuroinflammation as Triggering Events. Front. Neurosci. 2021, 15, 734158. [Google Scholar] [CrossRef]
- Michalak-Majewska, M.; Teterycz, D.; Muszyński, S.; Radzki, W.; Sykut-Domańska, E. Influence of Onion Skin Powder on Nutritional and Quality Attributes of Wheat Pasta. PLoS ONE 2020, 15, e0227942. [Google Scholar] [CrossRef]
- Sung, Y.-Y.; Kim, S.-H.; Kim, D.-S.; Park, S.H.; Yoo, B.W.; Kim, H.K. Nutritional Composition and Anti-Obesity Effects of Cereal Bar Containing Allium Fistulosum (Welsh Onion) Extract. J. Funct. Foods 2014, 6, 428–437. [Google Scholar] [CrossRef]
- Matysek, M.; Kowalczuk-Vasilev, E.; Szalak, R.; Baranowska-Wójcik, E.; Arciszewski, M.B.; Szwajgier, D. Can Bioactive Compounds in Beetroot/Carrot Juice Have a Neuroprotective Effect? Morphological Studies of Neurons Immunoreactive to Calretinin of the Rat Hippocampus after Exposure to Cadmium. Foods 2022, 11, 2794. [Google Scholar] [CrossRef] [PubMed]
- Derakhshan, F.; Toth, C. Insulin and the Brain. Curr. Diabetes Rev. 2013, 9, 102–116. [Google Scholar]
- Infante-Garcia, C.; Ramos-Rodriguez, J.J.; Galindo-Gonzalez, L.; Garcia-Alloza, M. Long-Term Central Pathology and Cognitive Impairment Are Exacerbated in a Mixed Model of Alzheimer’s Disease and Type 2 Diabetes. Psychoneuroendocrinology 2016, 65, 15–25. [Google Scholar] [CrossRef] [PubMed]
- The Hippocampus Book; Andersen, P., Morris, R., Amaral, D., Bliss, T., O’Keefe, J., Eds.; Oxford University Press: Oxford, UK, 2006; ISBN 978-0-19-510027-3. [Google Scholar]
- West, M.J. Stereological Methods for Estimating the Total Number of Neurons and Synapses: Issues of Precision and Bias. Trends Neurosci. 1999, 22, 51–61. [Google Scholar] [CrossRef]
- Baak, J.P.; Noteboom, E.; Koevoets, J.J. The Influence of Fixatives and Other Variations in Tissue Processing on Nuclear Morphometric Features. Anal. Quant. Cytol. Histol. 1989, 11, 219–224. [Google Scholar] [PubMed]
- Raji, C.A.; Ho, A.J.; Parikshak, N.N.; Becker, J.T.; Lopez, O.L.; Kuller, L.H.; Hua, X.; Leow, A.D.; Toga, A.W.; Thompson, P.M. Brain Structure and Obesity. Hum. Brain Mapp. 2010, 31, 353–364. [Google Scholar] [CrossRef] [PubMed]
- Cherbuin, N.; Sargent-Cox, K.; Fraser, M.; Sachdev, P.; Anstey, K.J. Being Overweight Is Associated with Hippocampal Atrophy: The PATH Through Life Study. Int. J. Obes. 2015, 39, 1509–1514. [Google Scholar] [CrossRef]
- Gómez-Apo, E.; Mondragón-Maya, A.; Ferrari-Díaz, M.; Silva-Pereyra, J. Structural Brain Changes Associated with Overweight and Obesity. J. Obes. 2021, 2021, 1–18. [Google Scholar] [CrossRef]
- Horvath, T.L.; Sarman, B.; García-Cáceres, C.; Enriori, P.J.; Sotonyi, P.; Shanabrough, M.; Borok, E.; Argente, J.; Chowen, J.A.; Perez-Tilve, D.; et al. Synaptic Input Organization of the Melanocortin System Predicts Diet-Induced Hypothalamic Reactive Gliosis and Obesity. Proc. Natl. Acad. Sci. USA 2010, 107, 14875–14880. [Google Scholar] [CrossRef]
- Lizarbe, B.; Soares, A.F.; Larsson, S.; Duarte, J.M.N. Neurochemical Modifications in the Hippocampus, Cortex and Hypothalamus of Mice Exposed to Long-Term High-Fat Diet. Front. Neurosci. 2019, 12, 985. [Google Scholar] [CrossRef]
- Flores-Dorantes, M.T.; Díaz-López, Y.E.; Gutiérrez-Aguilar, R. Environment and Gene Association with Obesity and Their Impact on Neurodegenerative and Neurodevelopmental Diseases. Front. Neurosci. 2020, 14, 863. [Google Scholar] [CrossRef]
- Bhat, Z.F.; Morton, J.D.; Mason, S.; Bekhit, A.E.-D.A.; Bhat, H.F. Obesity and Neurological Disorders: Dietary Perspective of a Global Menace. Crit. Rev. Food Sci. Nutr. 2019, 59, 1294–1310. [Google Scholar] [CrossRef]
- Moraes, J.C.; Coope, A.; Morari, J.; Cintra, D.E.; Roman, E.A.; Pauli, J.R.; Romanatto, T.; Carvalheira, J.B.; Oliveira, A.L.R.; Saad, M.J.; et al. High-Fat Diet Induces Apoptosis of Hypothalamic Neurons. PLoS ONE 2009, 4, e5045. [Google Scholar] [CrossRef]
- Schmitt, L.O.; Gaspar, J.M. Obesity-Induced Brain Neuroinflammatory and Mitochondrial Changes. Metabolites 2023, 13, 86. [Google Scholar] [CrossRef]
- Grillo, C.A.; Piroli, G.G.; Junor, L.; Wilson, S.P.; Mott, D.D.; Wilson, M.A.; Reagan, L.P. Obesity/Hyperleptinemic Phenotype Impairs Structural and Functional Plasticity in the Rat Hippocampus. Physiol. Behav. 2011, 105, 138–144. [Google Scholar] [CrossRef] [PubMed]
- Arnold, S.E.; Lucki, I.; Brookshire, B.R.; Carlson, G.C.; Browne, C.A.; Kazi, H.; Bang, S.; Choi, B.-R.; Chen, Y.; McMullen, M.F.; et al. High Fat Diet Produces Brain Insulin Resistance, Synaptodendritic Abnormalities and Altered Behavior in Mice. Neurobiol. Dis. 2014, 67, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Lindqvist, A.; Mohapel, P.; Bouter, B.; Frielingsdorf, H.; Pizzo, D.; Brundin, P.; Erlanson-Albertsson, C. High-fat Diet Impairs Hippocampal Neurogenesis in Male Rats. Eur. J. Neurol. 2006, 13, 1385–1388. [Google Scholar] [CrossRef]
- Freeman, L.R.; Haley-Zitlin, V.; Stevens, C.; Granholm, A.-C. Diet-Induced Effects on Neuronal and Glial Elements in the Middle-Aged Rat Hippocampus. Nutr. Neurosci. 2011, 14, 32–44. [Google Scholar] [CrossRef]
- Verkhratsky, A.; Nedergaard, M. Physiology of Astroglia. Physiol. Rev. 2018, 98, 239–389. [Google Scholar] [CrossRef]
- Hao, S.; Dey, A.; Yu, X.; Stranahan, A.M. Dietary Obesity Reversibly Induces Synaptic Stripping by Microglia and Impairs Hippocampal Plasticity. Brain Behav. Immun. 2016, 51, 230–239. [Google Scholar] [CrossRef]
- Hsuchou, H.; Pan, W.; Barnes, M.J.; Kastin, A.J. Leptin Receptor mRNA in Rat Brain Astrocytes. Peptides 2009, 30, 2275–2280. [Google Scholar] [CrossRef]
- Tsai, S.-F.; Wu, H.-T.; Chen, P.-C.; Chen, Y.-W.; Yu, M.; Wang, T.-F.; Wu, S.-Y.; Tzeng, S.-F.; Kuo, Y.-M. High-Fat Diet Suppresses the Astrocytic Process Arborization and Downregulates the Glial Glutamate Transporters in the Hippocampus of Mice. Brain Res. 2018, 1700, 66–77. [Google Scholar] [CrossRef]
- Raider, K.; Ma, D.; Harris, J.L.; Fuentes, I.; Rogers, R.S.; Wheatley, J.L.; Geiger, P.C.; Yeh, H.-W.; Choi, I.-Y.; Brooks, W.M.; et al. A High Fat Diet Alters Metabolic and Bioenergetic Function in the Brain: A Magnetic Resonance Spectroscopy Study. Neurochem. Int. 2016, 97, 172–180. [Google Scholar] [CrossRef]
- Yang, Y. Astrocytes: Targets in Obesity. Oncotarget 2015, 6, 12835–12836. [Google Scholar] [CrossRef]
- Cardoso, C.V.; Martins, M.M.; Otton, R.; Bondan, E.F. Abstract # 2059 Hippocampal Astrogliosis in Obese Animals. Brain Behav. Immun. 2019, 76, e5–e6. [Google Scholar] [CrossRef]
- Obara-Michlewska, M. The Contribution of Astrocytes to Obesity-Associated Metabolic Disturbances. J. Biomed. Res. 2022, 36, 299. [Google Scholar] [CrossRef]
- Kobylińska, A.; Janas, K.M. Health—Promoting Effect of Quercetin in Human Diet. Postępy Hig. Med. Dośw. 2015, 69, 51–62. [Google Scholar] [CrossRef]
- Zhou, J.; Yoshitomi, H.; Liu, T.; Zhou, B.; Sun, W.; Qin, L.; Guo, X.; Huang, L.; Wu, L.; Gao, M. Isoquercitrin Activates the AMP–Activated Protein Kinase (AMPK) Signal Pathway in Rat H4IIE Cells. BMC Complement. Altern. Med. 2014, 14, 42. [Google Scholar] [CrossRef]
- Hejazi, N.; Ghalandari, H.; Nouri, M.; Askarpour, M. Onion Supplementation and Health Metabolic Parameters: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Clin. Nutr. ESPEN 2023, 58, 1–13. [Google Scholar] [CrossRef]
- Zhang, X.-W.; Chen, J.-Y.; Ouyang, D.; Lu, J.-H. Quercetin in Animal Models of Alzheimer’s Disease: A Systematic Review of Preclinical Studies. Int. J. Mol. Sci. 2020, 21, 493. [Google Scholar] [CrossRef]
- Kumar, M.; Barbhai, M.D.; Hasan, M.; Punia, S.; Dhumal, S.; Radha; Rais, N.; Chandran, D.; Pandiselvam, R.; Kothakota, A.; et al. Onion (Allium Cepa L.) Peels: A Review on Bioactive Compounds and Biomedical Activities. Biomed. Pharmacother. 2022, 146, 112498. [Google Scholar] [CrossRef]
- Wróbel-Biedrawa, D.; Grabowska, K.; Galanty, A.; Sobolewska, D.; Podolak, I. A Flavonoid on the Brain: Quercetin as a Potential Therapeutic Agent in Central Nervous System Disorders. Life 2022, 12, 591. [Google Scholar] [CrossRef]
- Erion, J.R.; Wosiski-Kuhn, M.; Dey, A.; Hao, S.; Davis, C.L.; Pollock, N.K.; Stranahan, A.M. Obesity Elicits Interleukin 1-Mediated Deficits in Hippocampal Synaptic Plasticity. J. Neurosci. 2014, 34, 2618–2631. [Google Scholar] [CrossRef]
- Guo, D.-H.; Yamamoto, M.; Hernandez, C.M.; Khodadadi, H.; Baban, B.; Stranahan, A.M. Visceral Adipose NLRP3 Impairs Cognition in Obesity via IL-1R1 on CX3CR1+ Cells. J. Clin. Investig. 2020, 130, 1961–1976. [Google Scholar] [CrossRef] [PubMed]
Nutrients | Standard Commercial Rodent Chow LSM * | High-Energy Chow |
---|---|---|
Crude protein min. [g/kg] | 160 | 174 |
Crude fat min. [g/kg] | 28 | 151 |
Crude ash max. [g/kg] | 70 | 42.8 |
Calcium min. [g/kg] | 11 | 8.6 |
Phosphorus min. [g/kg] | 7 | 5.74 |
Sodium max. [g/kg] | 2.2 | 1.15 |
Vitamin A [IU/kg] | 8000 | 12,000 |
Vitamin D [IU/kg] | 1000 | 800 |
Vitamin E [mg/kg] | 50 | 75.7 |
Metabolic Energy [MJ/kg] | 12.06 | 16.00 |
Parameters | Onion Skin |
---|---|
Moisture [% d.m.] | 9.89 ± 0.10 |
Protein [% d.m.] | 2.58 ± 0.10 |
Fat [% d.m.] | 0.77 ± 0.03 |
Ash [% d.m.] | 5.50 ± 0.18 |
Carbohydrate * [% d.m.] | 19.17 ± 0.99 |
TDF [% d.m.] | 62.09 ± 0.77 |
IDF [% d.m.] | 54.71 ± 0.62 |
SDF [% d.m.] | 7.38 ± 0.59 |
Energy [kcal/100 g] | 218.10 ± 2.22 |
Total polyphenol [mg GAE/g d.m.] | 34.73 ± 0.60 |
Total flavonoids [mg QE/g d.m.] | 41.81 ± 4.83 |
PAC [μg/g d.m.] | 28.65 ± 3.14 |
Q [mg/g d.m.] | 18.74 ± 0.14 |
Q 4′ G [mg/g d.m.] | 4.99 ± 0.18 |
DPPH [mm TE/g d.m.] | 131.53 ± 2.09 |
FRAP [mm TE/g d.m.] | 274.74 ± 2.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Komar, M.; Michalak-Majewska, M.; Szalak, R.; Wawrzyniak, A.; Gustaw, W.; Radzki, W.; Arciszewski, M.B. Onion Peel Powder’s Impact on the Leptin Receptors in the Hippocampus of Obese Rats. Appl. Sci. 2025, 15, 1768. https://doi.org/10.3390/app15041768
Komar M, Michalak-Majewska M, Szalak R, Wawrzyniak A, Gustaw W, Radzki W, Arciszewski MB. Onion Peel Powder’s Impact on the Leptin Receptors in the Hippocampus of Obese Rats. Applied Sciences. 2025; 15(4):1768. https://doi.org/10.3390/app15041768
Chicago/Turabian StyleKomar, Małgorzata, Monika Michalak-Majewska, Radosław Szalak, Agata Wawrzyniak, Waldemar Gustaw, Wojciech Radzki, and Marcin B. Arciszewski. 2025. "Onion Peel Powder’s Impact on the Leptin Receptors in the Hippocampus of Obese Rats" Applied Sciences 15, no. 4: 1768. https://doi.org/10.3390/app15041768
APA StyleKomar, M., Michalak-Majewska, M., Szalak, R., Wawrzyniak, A., Gustaw, W., Radzki, W., & Arciszewski, M. B. (2025). Onion Peel Powder’s Impact on the Leptin Receptors in the Hippocampus of Obese Rats. Applied Sciences, 15(4), 1768. https://doi.org/10.3390/app15041768