Featured Application
This study provides full-scale crash test evidence demonstrating the effectiveness of Truck-Mounted Attenuators (TMAs) in reducing occupant injury during high-speed rear-end collisions in highway work zones. The results can be directly applied to improve roadside safety hardware design, optimize TMA configurations, and support the development or revision of evaluation standards for work-zone protection systems. In addition, the comparison between FSM (Flail Space Model)-based indices and ATD (Anthropomorphic Test Device)-measured responses offers practical guidance for enhancing occupant injury assessment methodologies in future safety evaluations.
Abstract
Rear-end collisions involving maintenance vehicles remain a critical source of severe injuries and fatalities in highway work zones. Existing studies on Rear Impact Guards (RIGs) and Truck-Mounted Attenuators (TMAs) have primarily relied on vehicle-based acceleration metrics or low-speed tests, leaving uncertainty regarding their performance under high-energy impact conditions. This study investigates occupant injury risk and vehicle crash behavior through full-scale frontal impact tests conducted at 80 km/h using a 2002 Renault SM520 passenger car against (1) a truck equipped with a RIG and (2) the same truck equipped with a TMA. Hybrid III 50th percentile ATDs, high-speed imaging, and multi-axis accelerometers were employed to measure occupant kinematics and injury responses. Occupant Risk Indices (THIV (Theoretical Head Impact Velocity), ASI (Acceleration Severity Index), PHD (Post-impact Head Deceleration), and ORA (Occupant Ridedown Acceleration)) and the ATD-based HIC36 were evaluated to assess crash severity. The RIG test exhibited severe underride, resulting in an HIC36 value of 1810, far exceeding the FMVSS 208 limit. In contrast, the TMA significantly reduced occupant injury risk, lowering HIC36 by 83.5%, and maintained controlled vehicle deceleration without compartment intrusion. Comparisons between FSM-based indices and ATD-measured injury responses revealed discrepancies in impact timing and occupant motion, highlighting limitations of current evaluation methodologies. The findings demonstrate the necessity of high-speed testing and ATD-based injury assessment for accurately characterizing RIG/TMA performance and provide evidence supporting improvements to roadside safety hardware standards and work-zone protection strategies.