Biocontrol Potential of Pleurotus ostreatus Mycelium Against the Beet Cyst Nematode Heterodera schachtii for Breeding Purposes
Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Organisms
2.2. Laboratory Pot Experiments
2.3. Field Experiments
2.4. Data Analyses
3. Results
3.1. Laboratory Experiments
3.2. Field Experiments
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| SD | Standard deviation |
References
- Mwangi, N.G.; Stevens, M.D.; Wright, A.J.D.; Watts, W.D.; Edwards, S.G.; Hare, M.C.; Back, M.A. Population dynamics of stubby root nematodes (Trichodorus and Paratrichodorus spp.) associated with ‘Docking disorder’ of sugar beet (Beta vulgaris L.), in field rotations with cover crops in East England. Ann. Appl. Biol. 2025, 187, 177–191. [Google Scholar] [CrossRef]
- Palizi, P.; Goltapeh, E.M.; Pourjam, E.; Safaie, N. Potential of oyster mushrooms for the biocontrol of sugar beet nematode (Heterodera schachtii). J. Plant Prot. Res. 2009, 49, 27–33. [Google Scholar] [CrossRef]
- Hauer, M.; Koch, H.-J.; Krüssel, S.; Mittler, S.; Märländer, B. Integrated control of Heterodera schachtii Schmidt in Central Europe by trap crop cultivation, sugar beet variety choice and nematicide application. Appl. Soil Ecol. 2016, 99, 62–69. [Google Scholar] [CrossRef]
- Barron, G.L.; Thorn, R.G. Destruction of nematodes by species of Pleurotus. Can. J. Bot. 1987, 65, 774–778. [Google Scholar] [CrossRef]
- Castro, L.R.I.; Delmastro, S.; Curvetto, N.R. Spent oyster mushroom substrate in a mix with organic soil for plant pot cultivation. Micol. Apl. Int. 2008, 20, 17–26. [Google Scholar]
- Degenkolb, T.; Vilcinskas, A. Metabolites from nematophagous fungi and nematicidal natural products from fungi as alternatives for biological control. Part II: Metabolites from nematophagous basidiomycetes and non-nematophagous fungi. Appl. Microbiol. Biotechnol. 2016, 100, 3813–3824. [Google Scholar] [CrossRef] [PubMed]
- Kwok, O.C.H.; Plattner, R.; Weisleder, D.; Wicklow, D.T. A nematicidal toxin from Pleurotus ostreatus NRRL 3526. J. Chem. Ecol. 1992, 18, 127–136. [Google Scholar] [CrossRef]
- Landi, N.; Ragucci, S.; Russo, R.; Valletta, M.; Pizzo, E.; Ferreras, J.M.; Di Maro, A. The ribotoxin-like protein Ostreatin from Pleurotus ostreatus fruiting bodies: Confirmation of a novel ribonuclease family expressed in basidiomycetes. Int. J. Biol. Macromol. 2020, 161, 1329–1336. [Google Scholar] [CrossRef]
- Žužek, M.C.; Maček, P.; Sepčić, K.; Cestnik, V.; Frangež, R. Toxic and lethal effects of ostreolysin, a cytolytic protein from edible oyster mushroom (Pleurotus ostreatus), in rodents. Toxicon 2006, 48, 264–271. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-H.; Lee, Y.-Y.; Chang, Y.-C.; Pon, W.-L.; Lee, S.-P.; Wali, N.; Nakazawa, T.; Honda, Y.; Shie, J.-J.; Hsueh, Y.-P. A carnivorous mushroom paralyzes and kills nematodes via a volatile ketone. Sci. Adv. 2023, 9, eade4809. [Google Scholar] [CrossRef]
- Moliszewska, E. Mushroom flavour. Acta Univ. Lodziensis. Folia Biol. Oecologica 2014, 10, 80–88. [Google Scholar] [CrossRef]
- Moliszewska, E.; Nabrdalik, M.; Dickenson, J. Mushrooms as Sources of Flavours and Scents. In Advances in Macrofungi: Pharmaceuticals and Cosmeceuticals; Sridhar, K.R., Deshmukh, S.K., Eds.; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Boca Raton, FL, USA, 2021; pp. 252–285. ISBN 9781003191278. [Google Scholar] [CrossRef]
- Khan, A.; Saifullah, M.I.; Hussain, S. Organic control of phytonematodes with Pleurotus species. Pak. J. Nematol. 2014, 32, 155–161. [Google Scholar]
- Kudrys, P.; Nabrdalik, M.; Hendel, P.; Kolasa-Więcek, A.; Moliszewska, E. Trait Variation between Two Wild Specimens of Pleurotus ostreatus and Their Progeny in the Context of Usefulness in Nematode Control. Agriculture 2022, 12, 1819. [Google Scholar] [CrossRef]
- Nelke, R.; Nabrdalik, M.; Żurek, M.; Kudrys, P.; Hendel, P.; Nowakowski, M.; Moliszewska, E.B. Nematicidal Properties of Wild Strains of Pleurotus ostreatus Progeny Derived from Buller Phenomenon Crosses. Appl. Sci. 2024, 14, 7980. [Google Scholar] [CrossRef]
- Kaczorowski, G. Wpływ Chwastów na Populację Heterodera schachtii Schmidt na Polach Gospodarstw Buraczanych. [The Influence of Weeds on the Population of Heterodera schachtii Schmidt in the Fields of Sugar Beet Farms.]. Ph.D. Thesis, Akademia Techniczno-Rolnicza, Bydgoszcz, Bydgoszcz, Poland, 1992; p. 63. (In Polish). [Google Scholar]
- Reinefeld, E.; Emmerich, A.; Baumgarten, G.; Winner, C.; Beiß, U. Zur Voraussage des Melassezuckers aus Rübenanalysen. Zucker 1974, 27, 2–15. [Google Scholar]
- Pineda-Alegría, J.A.; Sánchez-Vázquez, J.E.; González-Cortazar, M.; Zamilpa, A.; López-Arellano, M.E.; Cuevas-Padilla, E.J.; Mendoza-de-Gives, P.; Aguilar-Marcelino, L. The Edible Mushroom Pleurotus djamor Produces Metabolites with Lethal Activity Against the Parasitic Nematode Haemonchus contortus. J. Med. Food 2017, 20, 1184–1192. [Google Scholar] [CrossRef] [PubMed]
- Heydari, R.; Pourjam, E.; Goltapeh, E.M. Antagonistic Effect of Some Species of Pleurotus on the Root-knot Nematode, Meloidogyne javanica in vitro. Plant Pathol. J. 2006, 5, 173–177. [Google Scholar] [CrossRef]
- Nyangwire, B.; Ocimati, W.; Tazuba, A.F.; Blomme, G.; Alumai, A.; Onyilo, F. Pleurotus ostreatus is a potential biological control agent of root-knot nematodes in eggplant (Solanum melongena). Front. Agron. 2024, 6, 1464111. [Google Scholar] [CrossRef]
- Allam, M.; Radicetti, E.; Quintarelli, V.; Petroselli, V.; Marinari, S.; Mancinelli, R. Influence of organic and mineral fertilizers on soil organic carbon and crop productivity under different tillage systems: A meta-analysis. Agriculture 2022, 12, 464. [Google Scholar] [CrossRef]
- Nakatsuka, H.; Oda, M.; Hayashi, E.; Tamura, K. Effects of fresh spent mushroom substrate of Pleurotus ostreatus on soil micromorphology in Brazil. Geoderma 2016, 269, 54–60. [Google Scholar] [CrossRef]
- Truong, B.N.; Okazaki, K.; Fukiharu, T.; Takeuchi, Y.; Futai, K.; Le, X.T.; Suzuki, A. Characterization of the nematicidal toxocyst in Pleurotus subgen. Coremiopleurotus. Mycoscience 2007, 48, 222–230. [Google Scholar] [CrossRef]
- Reuther, M.; Lang, C.; Grundler, F.M.W. Nematode-tolerant sugar beet varieties—resistant or susceptible to the Beet Cyst Nematode Heterodera schachtii? Sugar Ind. 2017, 142, 277–284. [Google Scholar] [CrossRef]
- Tazuba, A.F.; Ocimati, W.; Ogwal, G.; Nyangwire, B.; Onyilo, F.; Blomme, G. Spent Pleurotus ostreatus Substrate Has Potential for Controlling the Plant-Parasitic Nematode, Radopholus similis in Bananas. Agronomy 2025, 15, 1040. [Google Scholar] [CrossRef]
- Mostafa, D.M.; Awd Allah, S.F.A.; Awad-Allah, E.F.A. Potential of Pleurotus sajor-caju compost for controlling Meloidogyne incognita and improve nutritional status of tomato plants. J. Plant Sci. Phytopathol. 2019, 3, 118–127. [Google Scholar] [CrossRef]
- Lopes, A.D.; de Melo Santana Gomes, S.; Schwengber, R.P.; Carpi, M.C.G.; Dias-Arieira, C.R. Control of Meloidogyne javanica with Pleurotus djamor spent mushroom substrate. Chem. Biol. Technol. Agric. 2023, 10, 13. [Google Scholar] [CrossRef]
- Garcia-Aguirre, J.; Hernández, C.; Esqueda, M. Spent oyster mushroom substrate as a potential bioactive and nutritional food ingredient for tilapia culture: A review. Lat. Am. J. Aquat. Res. 2025, 53, 209–225. [Google Scholar] [CrossRef]
- Cunha Zied, D.; Sánchez, J.E.; Noble, R.; Pardo-Giménez, A. Use of Spent Mushroom Substrate in New Mushroom Crops to Promote the Transition towards A Circular Economy. Agronomy 2020, 10, 1239. [Google Scholar] [CrossRef]
- Mwangi, R.W.; Mustafa, M.; Kappel, N.; Csambalik, L.; Szabó, A. Practical applications of spent mushroom compost in cultivation and disease control of selected vegetables species. J. Mater. Cycles Waste Manag. 2024, 26, 1918–1933. [Google Scholar] [CrossRef]
- Ma, X.; Yan, S.; Wang, M. Spent mushroom substrate: A review on present and future of green applications. J. Environ. Manag. 2025, 373, 123970. [Google Scholar] [CrossRef]
- Aiduang, W.; Jatuwong, K.; Kiatsiriroat, T.; Kamopas, W.; Tiyayon, P.; Jawana, R.; Xayyavong, O.; Lumyong, S. Spent Mushroom Substrate-Derived Biochar and Its Applications in Modern Agricultural Systems: An Extensive Overview. Life 2025, 15, 317. [Google Scholar] [CrossRef]




| pH H2O | Salinity [g·dm−3] | N-NO3 | P | K | Na | Ca | Mg |
|---|---|---|---|---|---|---|---|
| [mg·dm−3] | |||||||
| 7.08 | 1.95 | 111.5 | 102 | 158 | 54 | 1326 | 102 |
| Number of Live Eggs and Larvae/100 g of Dried Soil | ||||||
|---|---|---|---|---|---|---|
| fungus strain | Po4-8 | Po4-30 | Po4 3dix17 | Po4 14x17 | Po4 2dix1 | Control |
| black fallow | 2218 | 1163 | 1027 | 1204 | 884 | 1444 |
| sugar beet | 760 | 728 | 1752 | 1141 | 1084 | 977 |
| No. | Study Variant | Crop Type | Sowing | Harvesting | 2023 Pi | 2024 Pi |
|---|---|---|---|---|---|---|
| 1 | black fallow | control | -- | -- | 1057 | 1366 |
| 2 | black fallow + Po4 | control | -- | -- | 1099 | 1146 |
| 3 | sugar beet | Main crop [control] | 13 April 2023 5 April 2024 | 10 October 2023 8 October 2024 | 1269 | 1321 |
| 4 | sugar beet + Po4 | Main crop | 13 April 2023 5 April 2024 | 10 October 2023 8 October 2024 | 1171 | 1742 |
| Experiment Variant | Year | pH H2O | Salinity [g·dm−3] | N-NO3 | P | K | Na | Ca | Mg |
|---|---|---|---|---|---|---|---|---|---|
| [mg·dm−3] | |||||||||
| black fallow + Po4 /sugar beet + Po4 | 2023 | 7.11 | 1.95 | 114.0 | 98 | 162 | 49 | 1332 | 99 |
| 2024 | 7.09 | 1.90 | 115.5 | 101 | 160 | 51 | 1333 | 100 | |
| black fallow/sugar beet | 2023 | 7.19 | 1.90 | 108.0 | 130 | 164 | 53 | 1320 | 97 |
| 2024 | 7.11 | 1.95 | 113.0 | 118 | 163 | 52 | 1328 | 98 | |
| Month | 2023 | 2024 |
|---|---|---|
| Average Temperatures (min.–max.) [°C] | ||
| April | 8 (−4–22) | 11 (−3–28) |
| May | 14 (1–26) | 17 (2–28) |
| June | 19 (5–32) | 19 (6–34) |
| July | 20 (10–34) | 21 (10–35) |
| August | 20 (10–33) | 21 (9–33) |
| September | 19 (7–30) | 18 (2–33) |
| Mycelium | Reduction/Increase [%] | |||
|---|---|---|---|---|
| Sugar Beet | Black Fallow | |||
| Po4-8 | −32.50 | abd | −71.30 | c |
| Po4-30 | −23.28 | abd | −57.05 | bcd |
| Po4 3dix17 | 19.95 | e | −60.20 | cd |
| Po4 14x17 | −26.20 | a | −53.80 | abcd |
| Po4 2dix1 | −26.90 | ab | −46.90 | abcd |
| control | 242.65 | f | −28.10 | ab |
| Treatment | Analyze for the Whole-Experiment Variants | Analyze for Two Variants | ||
|---|---|---|---|---|
| 2023 | 2024 | 2023 | 2024 | |
| black fallow + Po4 | −45.38 a | −48.40 a | −45.38 a | −48.40 a |
| sugar beet + Po4 | −21.38 a | −7.50 a | −16.78 b | −5.80 b |
| black fallow | −16.78 a | −5.80 a | ||
| sugar beet | 96.45 b | 285.20 b | ||
| 2023 | 2024 | |||
|---|---|---|---|---|
| Sugar Beet | Sugar Beet + Po4 | Sugar Beet | Sugar Beet + Po4 | |
| Root yield [t·ha−1] | 79.2 | 78.7 | 84.0 | 102.8 |
| Leaf yield [t·ha−1] | 35.3 | 33.3 | 35.3 | 42.0 |
| Foliage index | 0.45 | 0.42 | 0.42 | 0.41 |
| Sugar content [%] | 15.35 | 15.59 | 17.13 | 16.62 |
| Biological sugar yield [t·ha−1] | 12.2 | 12.3 | 14.4 | 17.1 |
| Potassium (K) [mmol·kg−1] | 29.4 | 28.9 | 39.7 | 42.9 |
| Natrium (Na) [mmol·kg−1] | 6.18 | 5.43 | 7.78 | 8.28 |
| Alpha amino nitrogen (α-N) [mmol·kg−1] | 10.65 | 9.88 | 8.95 | 8.88 |
| Technological sugar content [%] | 13.59 | 13.86 | 14.71 | 15.27 |
| Technological sugar yield [t·ha−1] | 10.76 | 10.91 | 12.82 | 15.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nelke, R.; Nabrdalik, M.; Nowakowski, M.; Moliszewska, E. Biocontrol Potential of Pleurotus ostreatus Mycelium Against the Beet Cyst Nematode Heterodera schachtii for Breeding Purposes. Appl. Sci. 2025, 15, 12710. https://doi.org/10.3390/app152312710
Nelke R, Nabrdalik M, Nowakowski M, Moliszewska E. Biocontrol Potential of Pleurotus ostreatus Mycelium Against the Beet Cyst Nematode Heterodera schachtii for Breeding Purposes. Applied Sciences. 2025; 15(23):12710. https://doi.org/10.3390/app152312710
Chicago/Turabian StyleNelke, Robert, Małgorzata Nabrdalik, Mirosław Nowakowski, and Ewa Moliszewska. 2025. "Biocontrol Potential of Pleurotus ostreatus Mycelium Against the Beet Cyst Nematode Heterodera schachtii for Breeding Purposes" Applied Sciences 15, no. 23: 12710. https://doi.org/10.3390/app152312710
APA StyleNelke, R., Nabrdalik, M., Nowakowski, M., & Moliszewska, E. (2025). Biocontrol Potential of Pleurotus ostreatus Mycelium Against the Beet Cyst Nematode Heterodera schachtii for Breeding Purposes. Applied Sciences, 15(23), 12710. https://doi.org/10.3390/app152312710

