Comparative Bibliometric Analysis of Biomethane Production from Anaerobic Digestion of Pig Slurry and Slaughterhouse Wastewater: Research Trends and Gaps
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Production Evolution and Research Areas
3.2. Study of Journals, Affiliations, Countries and Authors
3.3. Analysis of Most Used Keywords
3.4. Most Cited Studies
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AD | Anaerobic Digestion |
| ACoD | Anaerobic Co-Digestion |
| PS | Pig Slurry |
| SWW | Slaughterhouse Wastewater |
| VS | Volatile solids |
| Mmax | Maximum biomethane potential |
| SCE-I | Science Citation Index Expanded |
References
- FAO. Meat Market Review: Overview of Global Market Developments in 2024; Food and Agriculture Organization of the United Nations: Rome, Italy, 2024; Available online: https://openknowledge.fao.org/items/b553c447-f6b2-4ff8-825e-024767b27760 (accessed on 3 September 2025).
- OECD; FAO. OECD-FAO Agricultural Outlook 2024–2033; OECD Publishing: Paris, France, 2024; Available online: https://openknowledge.fao.org/items/91c62ae8-b070-4ea8-8281-592376520b03 (accessed on 3 September 2025).
- USDA Foreign Agricultural Service. Livestock and Poultry: World Markets and Trade; United States Department of Agriculture: Washington, DC, USA, 2024. Available online: https://www.fas.usda.gov/sites/default/files/2024-07/Livestock_poultry.pdf (accessed on 3 September 2025).
- FAO. FAOSTAT Database: Livestock Primary; Food and Agriculture Organization of the United Nations: Rome, Italy, 2025; Available online: https://www.fao.org/faostat (accessed on 3 September 2025).
- OECD; FAO. OECD-FAO Agricultural Outlook 2025–2034; OECD Publishing: Paris, France, 2025; Available online: https://www.oecd.org/en/publications/oecd-fao-agricultural-outlook-2025-2034_601276cd-en.html (accessed on 3 September 2025).
- Mercat Carni-Ramader i Avícola de Barcelona. The Spanish Pork Sector: Main Figures and Economic Indicators. Mercat Carni-Ramader i Avícola de Barcelona, 27 September 2024. Available online: https://www.mercatcarnibcn.com/es/el-sector-porcino-espanol-principales-magnitudes-e-indicadores-economicos/#:~:text=El%20n%C3%BAmero%20de%20animales%20sacrificados,de%20los%20dos%20%C3%BAltimos%20a%C3%B1os (accessed on 3 September 2025).
- ANICE. Available online: https://www.anice.es/v_portal/busqueda/index.asp (accessed on 3 September 2025).
- Li, F.; Feng, B.; Zha, X.; Chu, Y.; Zhang, X.; He, R. Insights into Physiochemical and Biological Characteristics of Pig Manure During Anaerobic Digestion and Sheep Manure During Composting. Fermentation 2025, 11, 307. [Google Scholar] [CrossRef]
- Guo, X.; Wang, J. Kinetic models in environmental biotechnological processes: Origin, derivation and applications. Chemosphere 2025, 374, 144217. [Google Scholar] [CrossRef]
- Jung, A.-J.; Sharma, A.; Chung, M.; Wallace, T.C.; Lee, H.-J. The Relationship of Pork Meat Consumption with Nutrient Intakes, Diet Quality, and Biomarkers of Health Status in Korean Older Adults. Nutrients 2024, 16, 4188. [Google Scholar] [CrossRef]
- Upadhyay, A.; Singh, R.; Kumar, R.; Verma, N.; Talwar, P.; Ahire, P.; Vivekanand, V. Progress in anaerobic digestion of organic wastes to biomethane. In Biomass to Bioenergy: Modern Technological Strategies for Biorefineries, 1st ed.; Nanda, S., Dalai, A.K., Eds.; Woodhead Publishing: Amsterdam, The Netherlands, 2023; pp. 49–72. [Google Scholar] [CrossRef]
- Philipp, M.; Masmoudi Jabri, K.; Wellmann, J.; Akrout, H.; Bousselmi, L.; Geißen, S.-U. Slaughterhouse Wastewater Treatment: A Review on Recycling and Reuse Possibilities. Water 2021, 13, 3175. [Google Scholar] [CrossRef]
- Oosterkamp, W.J. Progress in Anaerobic Digestion of Manures. In Advances in Feedstock Conversion Technologies for Alternative Fuels and Bioproducts, 1st ed.; Hosseini, H., Ed.; Woodhead Publishing: Amsterdam, The Netherlands, 2019; pp. 299–315. [Google Scholar] [CrossRef]
- González, R.; Peña, D.C.; Gómez, X. Anaerobic Co-Digestion of Wastes: Reviewing Current Status and Approaches for Enhancing Biogas Production. Appl. Sci. 2022, 12, 8884. [Google Scholar] [CrossRef]
- Renggaman, A.; Choi, H.L.; Sudiarto, S.I.A.; Febrisiantosa, A.; Ahn, D.H.; Choung, Y.W.; Suresh, A. Biochemical Methane Potential of Swine Slaughter Waste, Swine Slurry, and Its Codigestion Effect. Energies 2021, 14, 7103. [Google Scholar] [CrossRef]
- Meneses Quelal, O.; Pilamunga Hurtado, D. Anaerobic Fermentation of Slaughterhouse Waste-Codigestion with Wheat Straw to Determine Methane Biochemical Potential and Kinetic Analysis. Fermentation 2023, 9, 726. [Google Scholar] [CrossRef]
- Kadam, R.; Jo, S.; Lee, J.; Khanthong, K.; Jang, H.; Park, J. A Review on the Anaerobic Co-Digestion of Livestock Manures in the Context of Sustainable Waste Management. Energies 2024, 17, 546. [Google Scholar] [CrossRef]
- Häner, J.; Neradko, A.; Weinrich, S.; Gausling, M.; Krüp, B.; Wetter, C.; Nelles, M. Evaluation of Pig Farming Residue as Substrate for Biomethane Production via Anaerobic Digestion. Biomass Convers. Biorefinery 2025, 15, 14303–14323. [Google Scholar] [CrossRef]
- Philipp, M.; Ackermann, H.; Barbana, N.; Pluschke, J.; Geißen, S.U. Possibilities for Anaerobic Digestion of Slaughter Waste and Flotates for Biomethane Production. Water 2023, 15, 1818. [Google Scholar] [CrossRef]
- Borowski, S.; Kubacki, P. Co-Digestion of Pig Slaughterhouse Waste with Sewage Sludge. Sci. Total Environ. 2015, 532, 198–208. [Google Scholar] [CrossRef]
- Domingues, P.S.; Ribeiro, A.C.; Albuquerque, A.; Cavaleiro, A.J.; Pereira, M.A. Anaerobic Mesophilic Co-Digestion of Swine Slurry and Slaughterhouse Wastewater. Front. Environ. Sci. 2021, 9, 684074. [Google Scholar] [CrossRef]
- de Melo, A.M.; Almeida, F.L.C.; Cavalcante, A.M.d.M.; Ikeda, M.; Barbi, R.C.T.; Costa, B.P.; Ribani, R.H. Garcinia brasiliensis Fruits and Its By-Products: Antioxidant Activity, Health Effects and Future Food Industry Trends-A Bibliometric Review. Trends Food Sci. Technol. 2021, 112, 325–335. [Google Scholar] [CrossRef]
- Toufexis, C.; Makris, D.-O.; Vlachokostas, C.; Michailidou, A.V.; Mertzanakis, C.; Vachtsiavanou, A. Bridging the Gap between Biowaste and Biomethane Production: A Systematic Review Meta-Analysis Methodological Approach. Sustainability 2024, 16, 6433. [Google Scholar] [CrossRef]
- Tiago, G.A.O.; Rodrigo, N.P.B.; Lourinho, G.; Lopes, T.F.; Gírio, F. Systematic and Bibliometric Review of Biomethane Production from Biomass-Based Residues: Technologies, Economics and Environmental Impact. Fuels 2025, 6, 8. [Google Scholar] [CrossRef]
- Zhao, P.; Zhang, S.; Wang, X.; Sun, H.; Guo, Y.; Wang, Q.; Sun, X. Research Progress on Anaerobic Digestion of Cellulose Waste Based on Bibliometric Analysis. Sustainability 2023, 15, 16060. [Google Scholar] [CrossRef]
- Helal, M.A.; Anderson, N.; Wei, Y.; Thompson, M. A Review of Biomass-to-Bioenergy Supply Chain Research Using Bibliometric Analysis and Visualization. Energies 2023, 16, 1187. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. Bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L. Software Survey: VOSviewer, a Computer Program for Bibliometric Mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef]
- Estévez, R.; Quijada-Maldonado, E.; Romero, J.; Abejón, R. Additive Manufacturing and Chemical Engineering: Looking for Synergies from a Bibliometric Study. Appl. Sci. 2025, 15, 2962. [Google Scholar] [CrossRef]
- Sawatdeenarunat, C.; Surendra, K.C.; Takara, D.; Oechsner, H.; Khanal, S.K. Anaerobic digestion of lignocellulosic biomass: Challenges and opportunities. Bioresour. Technol. 2024, 341, 125–139. [Google Scholar] [CrossRef]
- Álvarez, J.A.; Otero, L.; Lema, J.M. A methodology for optimising feed composition for anaerobic co-digestion of agro-industrial wastes. Bioresour. Technol. 2015, 190, 149–156. [Google Scholar] [CrossRef]
- Zhang, A.; Zhang, C.; Munir, H.; Li, J.; Wang, S. Circular Economy Policies in China and Europe: A Systematic Literature Review. Circ. Econ. Sustain. 2025, 5. [Google Scholar] [CrossRef]
- Jiang, X.Y.; Sommer, S.G.; Christensen, K.V. A review of the biogas industry in China. Energy Policy 2011, 39, 6073–6081. [Google Scholar] [CrossRef]
- Agyekum, E.B.; Nutakor, C. Recent Advancement in Biochar Production and Utilization-A Combination of Traditional and Bibliometric Review. Int. J. Hydrogen Energy 2024, 54, 1137–1153. [Google Scholar] [CrossRef]
- Renggaman, A.; Choi, H.L.; Sudiarto, S.I.A.; Suresh, A.; Jeon, Y.C. Biomethane Potential of Beef Cattle Slaughterhouse Waste and the Impact of Co-Digestion with Cattle Feces and Swine Slurry. Fermentation 2024, 10, 510. [Google Scholar] [CrossRef]
- Jo, S.; Kadam, R.; Jang, H.; Seo, D.; Park, J. Elucidating Synergetic Effects of Anaerobic Co-Digestion of Slaughterhouse Waste with Livestock Manures. Energies 2024, 17, 3027. [Google Scholar] [CrossRef]
- Djintoingar, S.; Sarfo Agyemang Derkyi, N.; Kuranchie, F.; Yankyera, J.K. A review of Response Surface Methodology for Biogas Process Optimization. Cogent Eng. 2022, 9, e2115283. [Google Scholar] [CrossRef]
- Habchi, S.; Lahboubi, N.; Sallek, B.; El Bari, H. Response Surface Methodology for Anaerobic Digestion of Waste from Poultry Slaughterhouse: Optimization of Load and Hydraulic Retention Time. Results Eng. 2023, 18, 101215. [Google Scholar] [CrossRef]
- Muñoz-Leiva, F.; Viedma-del-Jesús, M.I.; Sánchez-Fernández, J.; López-Herrera, A.G. An application of co-word analysis and bibliometric maps for detecting the most highlighting themes in the consumer behaviour research from a longitudinal perspective. Qual. Quant. 2012, 46, 1077–1095. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, M.; Hu, T.; Fu, X.; Gao, Z.; Halloran, B.; Liu, Y. A Bibliometric Analysis and Network Visualisation of Human Mobility Studies from 1990 to 2020: Emerging Trends and Future Research Directions. Sustainability 2021, 13, 5372. [Google Scholar] [CrossRef]
- Kafle, G.K.; Chen, L. Comparison on batch anaerobic digestion of five different livestock manures and prediction of biochemical methane potential (BMP) using different statistical models. Waste Manag. 2016, 56, 492–502. [Google Scholar] [CrossRef] [PubMed]
- Insam, H.; Gómez-Brandón, M.; Ascher, J. Manure-based biogas fermentation residues—Friend or foe of soil fertility? Soil Biol. Biochem. 2015, 84, 1–14. [Google Scholar] [CrossRef]
- Khoshnevisan, B.; Duan, N.; Tsapekos, P.; Awasthi, M.K.; Liu, Z.; Mohammadi, A.; Angelidaki, I.; Tsang, D.C.W.; Zhang, Z.; Pan, J.; et al. A critical review on livestock manure biorefinery technologies: Sustainability, challenges, and future perspectives. Renew. Sustain. Energy Rev. 2021, 135, 110033. [Google Scholar] [CrossRef]
- Hou, Y.; Velthof, G.L.; Oenema, O. Mitigation of ammonia, nitrous oxide and methane emissions from manure management chains: A meta-analysis and integrated assessment. Glob. Change Biol. 2015, 21, 1293–1312. [Google Scholar] [CrossRef]
- Möller, K. Effects of anaerobic digestion on soil carbon and nitrogen turnover, N emissions, and soil biological activity: A review. Agron. Sustain. Dev. 2015, 35, 1021–1041. [Google Scholar] [CrossRef]
- Tyagi, V.K.; Fdez-Guelfo, L.A.; Zhou, Y.; Álvarez-Gallego, C.J.; García, L.I.R.; Ng, W.J. Anaerobic co-digestion of organic fraction of municipal solid waste (OFMSW): Progress and challenges. Renew. Sustain. Energy Rev. 2018, 93, 380–399. [Google Scholar] [CrossRef]
- Aziz, A.; Basheer, F.; Sengar, A.; Irfanullah; Khan, S.U.; Farooqi, I.H. Biological wastewater treatment (anaerobic–aerobic) technologies for safe discharge of treated slaughterhouse and meat processing wastewater. Sci. Total Environ. 2019, 686, 681–708. [Google Scholar] [CrossRef]
- Nie, H.; Jacobi, H.; Strach, K.; Xu, C.; Zhou, H.; Liebetrau, J. Mono-fermentation of chicken manure: Ammonia inhibition and recirculation of the digestate. Bioresour. Technol. 2015, 178, 238–246. [Google Scholar] [CrossRef]
- Moestedt, J.; Nordell, E.; Shakeri Yekta, S.; Lundgren, J.; Martí, M.; Sundberg, C. Effects of trace element addition on process stability during anaerobic co-digestion of OFMSW and slaughterhouse waste. Waste Manag. 2016, 47, 11–20. [Google Scholar] [CrossRef]
- Harris, P.W.; McCabe, B.K. Review of pre-treatments used in anaerobic digestion and their potential application in high-fat cattle slaughterhouse wastewater. Appl. Energy 2015, 155, 560–575. [Google Scholar] [CrossRef]






| Ranking | Pig Slurry | Number | % a | Slaughterhouse Wastewater | Number | % b |
|---|---|---|---|---|---|---|
| 1 | Environmental Sciences Ecology | 584 | 41.18 | Environmental Sciences Ecology | 98 | 39.20 |
| 2 | Engineering | 466 | 32.86 | Engineering | 95 | 38.00 |
| 3 | Energy Fuels | 447 | 31.52 | Energy Fuels | 88 | 35.20 |
| 4 | Biotechnology Applied Microbiology | 304 | 21.44 | Science Technology Other Topics | 47 | 18.80 |
| 5 | Agriculture | 281 | 19.82 | Biotechnology Applied Microbiology | 45 | 18.00 |
| Ranking | Pig Slurry | Number | % a | Slaughterhouse Wastewater | Number | % b |
|---|---|---|---|---|---|---|
| Journals | ||||||
| 1 | Bioresource Technology (IF 9) | 179 | 12.66 | Energies (IF 3.2) | 18 | 7.20 |
| 2 | Waste Management (IF 7.1) | 74 | 5.23 | Waste Management (IF 7.1) | 15 | 6.00 |
| 3 | Journal of Environmental Management (IF 8.4) | 53 | 3.75 | Bioresource Technology (IF 9) | 13 | 5.20 |
| 4 | Science of the Total Environment (IF 8) | 51 | 3.61 | Renewable & Sustainable Energy Reviews (IF 16.3) | 12 | 4.80 |
| 5 | Journal of Cleaner Production (IF 10) | 50 | 3.54 | Biomass Conversion and Biorefinery (IF 4.1) | 10 | 4.00 |
| Countries | ||||||
| 1 | China | 598 | 42.17 | China | 32 | 12.80 |
| 2 | USA | 123 | 8.67 | Spain | 25 | 10.00 |
| 3 | Spain | 118 | 8.32 | India | 22 | 8.80 |
| 4 | Brazil | 101 | 7.12 | Australia | 21 | 8.40 |
| 5 | Denmark | 62 | 4.37 | Brazil | 13 | 5.20 |
| Affiliations | ||||||
| 1 | Chinese Academy of Sciences | 124 | 8.76 | University of Putra Malaysia | 14 | 5.60 |
| 2 | China Agricultural University | 95 | 6.72 | Cape Peninsula University of Technology | 10 | 4.0 |
| 3 | Chinese Academy of Agricultural Sciences | 88 | 6.22 | University of Southern Queensland | 9 | 3.60 |
| 4 | Northwest ANNDF University, China | 63 | 4.45 | IRTA | 8 | 3.20 |
| 5 | University of Aarhus | 54 | 3.82 | University of Lanzhou | 8 | 3.20 |
| Authors | ||||||
| 1 | Liu Y | 28 | 4.13 | Mccabe BK | 7 | 2.80 |
| 2 | Dong RJ | 21 | 3.42 | Schmidt T | 6 | 2.40 |
| 3 | Deng LW | 20 | 3.17 | Harris PW | 5 | 2.00 |
| 4 | Zhan XM | 20 | 3.17 | Idrus S | 5 | 2.00 |
| 5 | Wang XJ | 18 | 3.08 | Musa MA | 5 | 2.00 |
| Ranking | Pig Slurry | Slaughterhouse Wastewater | ||
|---|---|---|---|---|
| Keywords | Occurrences | Keywords | Occurrences | |
| 1 | Anaerobic-digestion | 370 | Co-digestion | 81 |
| 2 | Methane production | 357 | Biogas production | 74 |
| 3 | Biogas production | 347 | Anaerobic-digestion | 62 |
| 4 | Swine manure | 292 | Methane production | 55 |
| 5 | Food waste | 272 | Slaughterhouse waste | 52 |
| 6 | Pig manure | 260 | Food waste | 47 |
| 7 | Co-digestion | 251 | Performance | 42 |
| 8 | Performance | 202 | Sewage-sludge | 42 |
| 9 | Waste | 187 | Inhibition | 32 |
| 10 | Sludge | 162 | Energy | 28 |
| Cluster | Pig Slurry | Slaughterhouse Wastewater | ||
|---|---|---|---|---|
| Number | Keywords on VOSviewer Network | Number | Keywords on VOSviewer Network | |
| 1 | 14 | Anaerobic co-digestion, anaerobic digestion, biogas, biogas production, co-digestion, methane, methane production, methane yield, microbial community, pig manure, pig slurry, rice straw, swine manure, swine wastewater | 13 | Abattoir, anaerobic digestion, biogas, biomethane, co-digestion, methane, renewable energy, response surface method, slaughterhouse, slaughterhouse waste, slaughterhouse wastewater, sludge, waste management |
| 2 | 4 | Antibiotic resistance genes, antibiotics, digestate, manure | 4 | Inhibition, kinetics, sewage sludge, trace elements |
| 3 | 2 | Biomethane, food waste | 3 | Anaerobic co-digestion, biochemical methane potential, microbial community |
| 4 | 2 | Ammonia inhibition, biochar | 2 | Ammonia, organic loading rate |
| 5 | 1 | Livestock manure | 2 | Fermentation, food waste |
| 6 | 1 | Life cycle assessment | 2 | Bioenergy, methane yield |
| 7 | 1 | Renewable energy | 2 | Biogas production, pretreatment |
| Ranking | Title | Authors | Journal | Year | Citation per Year | Total Citation | References |
|---|---|---|---|---|---|---|---|
| Pig Slurry | |||||||
| 1 | Comparison of batch anaerobic digestion of five different livestock manures and prediction of biochemical methane potential (BMP) using different statistical models | Kafle, G.K.; Chen, L. | Waste Management | 2016 | 36.00 | 360 | [41] |
| 2 | Manure-based biogas fermentation residues—Friend or foe of soil fertility? | Insam, H.; Gómez-Brandón, M.; Ascher, J. | Soil Biology and Biochemistry | 2015 | 22.73 | 250 | [42] |
| 3 | A critical review of livestock manure biorefinery technologies: Sustainability, challenges, and future perspectives | Khoshnevisan, B.; Duan, N.; et al. | Renewable and Sustainable Energy Reviews | 2021 | 45.60 | 228 | [43] |
| 4 | Mitigation of ammonia, nitrous oxide and methane emissions from manure management chains: a meta-analysis and integrated assessment | Hou, Y.; Velthof, G.L.; Oenema, O. | Global Change Biology | 2015 | 20.55 | 226 | [44] |
| 5 | Effects of anaerobic digestion on soil carbon and nitrogen turnover, N emissions, and soil biological activity. A review | Möller, K. | Agronomy for Sustainable Development | 2015 | 19.55 | 215 | [45] |
| Slaughterhouse Wastewater | |||||||
| 1 | Anaerobic co-digestion of organic fraction of municipal solid waste (OFMSW): Progress and challenges | Tyagi V.K., Fdez-Guelfo L.A., et al. | Renewable and Sustainable Energy Reviews | 2018 | 33.75 | 270 | [46] |
| 2 | Biological wastewater treatment (anaerobic-aerobic) technologies for safe discharge of treated slaughterhouse and meat processing wastewater | Aziz, A.; Basheer, F.; Sengar, A.; Irfanullah, Khan, S.U. | Science of The Total Environment | 2019 | 27.00 | 189 | [47] |
| 3 | Mono-fermentation of chicken manure: Ammonia inhibition and recirculation of the digestate | Nie H., Jacobi H., et al. | Bioresource Technology | 2015 | 14.91 | 164 | [48] |
| 4 | Modeling methane production kinetics of complex poultry slaughterhouse wastes using sigmoidal growth functions | Moestedt J., Nordell E., et al. | Renewable Energy | 2017 | 16.89 | 152 | [49] |
| 5 | Review of pre-treatments used in anaerobic digestion and their potential application in high-fat cattle slaughterhouse wastewater | Harris, P.W.; McCabe, B.K | Applied Energy | 2015 | 13.55 | 149 | [50] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Candel, M.; Fernández-Rodríguez, J.; Solera, R.; Perez, M. Comparative Bibliometric Analysis of Biomethane Production from Anaerobic Digestion of Pig Slurry and Slaughterhouse Wastewater: Research Trends and Gaps. Appl. Sci. 2025, 15, 12105. https://doi.org/10.3390/app152212105
Candel M, Fernández-Rodríguez J, Solera R, Perez M. Comparative Bibliometric Analysis of Biomethane Production from Anaerobic Digestion of Pig Slurry and Slaughterhouse Wastewater: Research Trends and Gaps. Applied Sciences. 2025; 15(22):12105. https://doi.org/10.3390/app152212105
Chicago/Turabian StyleCandel, Maria, Juana Fernández-Rodríguez, Rosario Solera, and Montserrat Perez. 2025. "Comparative Bibliometric Analysis of Biomethane Production from Anaerobic Digestion of Pig Slurry and Slaughterhouse Wastewater: Research Trends and Gaps" Applied Sciences 15, no. 22: 12105. https://doi.org/10.3390/app152212105
APA StyleCandel, M., Fernández-Rodríguez, J., Solera, R., & Perez, M. (2025). Comparative Bibliometric Analysis of Biomethane Production from Anaerobic Digestion of Pig Slurry and Slaughterhouse Wastewater: Research Trends and Gaps. Applied Sciences, 15(22), 12105. https://doi.org/10.3390/app152212105

