Abstract
Scalp image detection faces challenges such as limited evaluation dimensions, difficulties in quantifying user perception, and insufficient discriminative power of traditional assessment methods. To address these issues, this paper proposes a multi-attribute decision-making model for deep learning algorithm selection. The model integrates subjective and objective weighting through a hybrid approach, where natural language processing (NLP) techniques extract perceptual preferences from user reviews, and the Interval-valued neutrosophic set analytic hierarchy process (IVNS-AHP) and entropy weight method (EWM) are employed to determine subjective and objective weights, respectively. The combined weights are used within the IVNS-VIKOR (Vlse Kriterijumska Optimizacija Kompromisno Resenje) framework, enhanced by a possibility distribution (PD) to improve discriminative capability. Experiments were conducted using multiple performance metrics, including Precision, Recall, mean Average Precision at IoU = 0.5 (mAP@50), F1 Score, frames per second (FPS), and Parameters, to evaluate mainstream scalp detection algorithms. The results demonstrate that YOLOv8n achieves the highest comprehensive ranking with strong stability across different decision preferences. Comparative analyses with TODIM (an acronym in Portuguese of interactive and multiple attribute decision-making), TOPSIS (Technique for Order Preference by Similarity to an Ideal Solution), and fuzzy VIKOR variants confirm that the proposed PD-VIKOR method provides superior ranking stability and discriminative precision, offering a more reliable and robust evaluation under uncertainty.