You are currently viewing a new version of our website. To view the old version click .
Applied Sciences
  • This is an early access version, the complete PDF, HTML, and XML versions will be available soon.
  • Article
  • Open Access

7 November 2025

Optimization of Nitrogen Injection Huff-and-Puff Parameters for Ultra-High-Temperature and Ultra-High-Pressure Fractured-Vuggy Carbonate Condensate Gas Reservoirs in the Shunbei Area

,
,
,
and
1
School of Geosciences, Yangtze University, Wuhan 430100, China
2
Hubei Key Laboratory of Complex Shale Oil and Gas Geology and Development in Southern China, Yangtze University, Wuhan 430100, China
3
Hubei Engineering Research Center of Unconventional Petroleum Geology and Engineering, Yangtze University, Wuhan 430100, China
4
School of Resources, China University of Geosciences (Wuhan), Wuhan 430100, China

Abstract

The Shunbei 42X well group belongs to fractured-vuggy carbonate condensate gas reservoirs. This type of reservoir exhibits extreme heterogeneity, differing significantly from conventional reservoirs and posing considerable challenges for exploitation. Research on fractured-vuggy carbonate condensate gas reservoirs can begin with modeling and numerical simulation. By using historical data fitting to refine parameters such as pressure, production, and reserves, we can deepen our understanding of the reservoir and the movement patterns of water and oil. Combined with a geological and reservoir engineering analysis of residual oil distribution, this approach enables the evaluation of steady-state production technology feasibility. This study employs numerical simulation to conduct single-well injection production modeling for well SHB42X. First, a numerical model was created in simulation software, defining parameters such as grid spatial location and reservoir temperature. Second, the numerical model was established, and historical production dynamics were fitted using the software’s PVT module. Finally, after successful fitting, subsequent production parameters were set. By summarizing previous studies on gas injection huff-and-puff mechanisms and analyzing changes in parameters like recovery rates after actual injection, the simulation results for natural gas, nitrogen, water, and depleted reservoir development were compared. Further comparisons are made on the throughput effects of nitrogen under varying injection rates, production rates, injection volumes, and well-killing durations. Optimal parameters are selected to provide reference for enhancing subsequent development efficiency.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.