You are currently viewing a new version of our website. To view the old version click .
Applied Sciences
  • This is an early access version, the complete PDF, HTML, and XML versions will be available soon.
  • Article
  • Open Access

7 November 2025

Super Time-Cognitive Neural Networks (Phase 3 of Sophimatics): Temporal-Philosophical Reasoning for Security-Critical AI Applications

and
1
Department of Computer Science, University of Salerno, 84084 Fisciano, Italy
2
Liceo Scientifico Statale Francesco Severi, 84100 Salerno, Italy
*
Author to whom correspondence should be addressed.
This article belongs to the Special Issue Advanced Technologies in Data and Information Security, Fourth Edition

Abstract

Current generative AI systems, despite extraordinary progress, face fundamental limitations in temporal reasoning, contextual understanding, and ethical decision-making. These systems process information statistically without authentic comprehension of experiential time or intentional context, limiting their applicability in security-critical domains where reasoning about past experiences, present situations, and future implications is essential. We present Phase 3 of the Sophimatics framework: Super Time-Cognitive Neural Networks (STCNNs), which address these limitations through complex-time representation T ∈ ℂ where chronological time (Re(T)) integrates with experiential dimensions of memory (Im(T) < 0), present awareness (Im(T) ≈ 0), and imagination (Im(T) > 0). The STCNN architecture implements philosophical constraints through geometric parameters α and β that bound memory accessibility and creative projection, enabling neural systems to perform temporal-philosophical reasoning while maintaining computational tractability. We demonstrate STCNN’s effectiveness across five security-critical applications: threat intelligence (AUC 0.94, 1.8 s anticipation), privacy-preserving AI (84% utility at ε = 1.0), intrusion detection (96.3% detection, 2.1% false positives), secure multi-party computation (ethical compliance 0.93), and blockchain anomaly detection (94% detection, 3.2% false positives). Empirical evaluation shows 23–45% improvement over baseline systems while maintaining temporal coherence > 0.9, demonstrating that integration of temporal-philosophical reasoning with neural architectures enables AI systems to reason about security threats through simultaneous processing of historical patterns, current contexts, and projected risks.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.