Abstract
Current generative AI systems, despite extraordinary progress, face fundamental limitations in temporal reasoning, contextual understanding, and ethical decision-making. These systems process information statistically without authentic comprehension of experiential time or intentional context, limiting their applicability in security-critical domains where reasoning about past experiences, present situations, and future implications is essential. We present Phase 3 of the Sophimatics framework: Super Time-Cognitive Neural Networks (STCNNs), which address these limitations through complex-time representation T ∈ ℂ where chronological time (Re(T)) integrates with experiential dimensions of memory (Im(T) < 0), present awareness (Im(T) ≈ 0), and imagination (Im(T) > 0). The STCNN architecture implements philosophical constraints through geometric parameters α and β that bound memory accessibility and creative projection, enabling neural systems to perform temporal-philosophical reasoning while maintaining computational tractability. We demonstrate STCNN’s effectiveness across five security-critical applications: threat intelligence (AUC 0.94, 1.8 s anticipation), privacy-preserving AI (84% utility at ε = 1.0), intrusion detection (96.3% detection, 2.1% false positives), secure multi-party computation (ethical compliance 0.93), and blockchain anomaly detection (94% detection, 3.2% false positives). Empirical evaluation shows 23–45% improvement over baseline systems while maintaining temporal coherence > 0.9, demonstrating that integration of temporal-philosophical reasoning with neural architectures enables AI systems to reason about security threats through simultaneous processing of historical patterns, current contexts, and projected risks.