An ANN–Driven Excavatability Chart Integrating GSI and Rock Mass Strength
Abstract
1. Introduction
2. Brief Literature Review on the Excavatability Assessments of Rock Masses
2.1. Early Empirical Approaches
2.2. GSI-Based Excavatability Assessments
2.3. Flexible Approaches: EXCASS
2.4. Graphical Representation of EXCASS
3. Statistical Evaluation of the Database
4. Development of an ANN-Driven Excavability Chart Integrating GSI and σc_rm
4.1. ANN Analysis for GSI- and σc_rm-Oriented Excavatability Prediction
4.2. Production of GSI- and σc_rm-Oriented Excavatability Prediction Chart
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kesimal, A.; Karaman, K.; Cihangir, F.; Erçikdi, B. Excavatability Assessment of Rock Masses for Geotechnical Studies. In Handbook of Research on Trends and Digital Advances in Engineering Geology; IGI Global Scientific Publishing: Hershey, PA, USA, 2018; pp. 231–256. [Google Scholar]
- Khamehchiyan, M.; Dizadji, M.R.; Esmaeili, M. Application of rock mass index (RMi) to the rock mass excavatability assessment in open face excavations. Geomech. Geoengin. 2014, 9, 63–71. [Google Scholar] [CrossRef]
- MacGregor, F.; Fell, R.; Mostyn, G.R.; McNelly, G. The estimation of rock rippability. Q. J. Eng. Geol. Hydrogeol. 1994, 27, 123–144. [Google Scholar] [CrossRef]
- Basarir, H.; Karpuz, C. A rippability classification system for marls in lignite mines. Eng. Geol. 2004, 74, 303–318. [Google Scholar] [CrossRef]
- Dinc, O.S.; Sonmez, H.; Tunusluoglu, C.; Kasapoglu, K.E. A new general empirical approach for the prediction of rock mass strengths of soft to hard rock masses. Int. J. Rock Mech. Min. Sci. 2011, 48, 650–665. [Google Scholar] [CrossRef]
- Cui, L.; Sheng, Q.; Zhang, J.; Dong, Y.-K.; Gou, Z.-S. Regression model for predicting tunnel strain in strain-softening rock mass for underground openings. Int. J. Rock Mech. Min. Sci. 2019, 119, 81–97. [Google Scholar] [CrossRef]
- Yertutanol, K.; Akgün, H.; Sopacı, E. Displacement monitoring, displacement verification and stability assessment of the critical sections of the Konak tunnel, İzmir, Turkey. Tunn. Undergr. Space Technol. 2020, 101, 103357. [Google Scholar] [CrossRef]
- Del Pozo, F.; Córdova, E.; Marquardt, C.; Cabezas, G.R.; Benson, P.; Koor, N.; Browning, J.; Rudloff, R. Development of a geomechanical model based on suitable estimations of GSI and UCS in mining production slopes at the TilTil district, central Chile. Int. J. Rock Mech. Min. Sci. 2023, 167, 105390. [Google Scholar] [CrossRef]
- Liu, B.; Wang, R.; Zhao, G.; Guo, X.; Wang, Y.; Li, J.; Wang, S. Prediction of rock mass parameters in the TBM tunnel based on BP neural network integrated simulated annealing algorithm. Tunn. Undergr. Space Technol. 2020, 95, 103103. [Google Scholar] [CrossRef]
- Sonmez, H.; Dagdelenler, G.; Ozcelik, Y.; Ercanoglu, M. A complementary approach to quantify the basic GSI chart considering scale effect on rock structure. J. Rock Mech. Geotech. Eng. 2025, 17, 154–167. [Google Scholar] [CrossRef]
- Wang, L.; Zhu, L.; Cao, Z.; Liu, J.; Xue, Y.; Wang, P.; Cao, X. Thermo-mechanical degradation and fracture evolution in low-permeability coal subjected to cyclic heating–cryogenic cooling. Phys. Fluids 2025, 37, 086617. [Google Scholar] [CrossRef]
- Teng, T.; Chen, Y.; Wang, Y.; Qiao, X. In Situ Nuclear Magnetic Resonance Observation of Pore Fractures and Permeability Evolution in Rock and Coal under Triaxial Compression. J. Energy Eng. 2025, 151, 04025036. [Google Scholar] [CrossRef]
- Tsiambaos, G.; Saroglou, H. Excavatability assessment of rock masses using the geological strength index (GSI). Bull. Eng. Geol. Environ. 2010, 69, 13–27. [Google Scholar]
- Pettifer, G.S.; Fookes, P.G. A revision of the graphical method for assessing the excavatability of rock. Q. J. Eng. Geol. 1994, 27, 145–164. [Google Scholar] [CrossRef]
- Dagdelenler, G.; Sonmez, H.; Saroglou, C. A flexible system for selection of rock mass excavation method. Bull. Eng. Geol. Environ. 2020, 79, 5355–5369. [Google Scholar] [CrossRef]
- Hoek, E.; Karzulovic, A. Rock mass properties for surface mines. In Slope Stability in Surface Mining; Hustralid, W.A., McCarter, M.K., van Zyl, D.J.A., Eds.; Society for Mining Metallurgical and Exploration (SME): Littleton, CO, USA, 2000; pp. 59–70. [Google Scholar]
- Abdullatif, O.M.; Cruden, D.M. The relationship between rock mass quality and ease of excavation. Bull. Eng. Geol. Environ. 1983, 28, 183–187. [Google Scholar] [CrossRef]
- Dagdelenler, G. Comparison of the efficiency evaluations of selected excavatability classifications for rock masses. Arab. J. Geosci. 2021, 14, 1281. [Google Scholar] [CrossRef]
- Franklin, J.A.; Broch, E.; Walton, G. Logging the mechanical character of rock. Trans. Inst. Min. Metall. 1971, 80, 1–9. [Google Scholar]
- Weaver, J.M. Geological factors significant in the assessment of rippability. Civ. Eng. S. Afr. 1975, 17, 313–316. [Google Scholar]
- Kirsten, H.A.D. A classification system for excavation in natural materials. Civ. Eng. S. Afr. 1982, 24, 293–308. [Google Scholar]
- Minty, E.J.; Kearns, G.K. Rock mass workability. In Collected Case Studies in Engineering Geology, Hydrogeology and Environmental Geology; Knight, M.J., Minty, E.J., Smith, R.B., Eds.; Geological Society of Australia. Special Publication: Sydney, Australia, 1983; Volume 11, pp. 59–81. [Google Scholar]
- Hadjigeorgiou, J.; Poulin, R. Assessment of ease of excavation of surface mines. J. Terramech. 1998, 35, 137–153. [Google Scholar] [CrossRef]
- Karpuz, C. A classification system for excavation of surface Coal Measures. Min. Sci. Technol. 1990, 11, 157–163. [Google Scholar] [CrossRef]
- Bailey, A.D. Rock Types and Seismic Velocities versus Rippability. Highway Geol. Symp. Proa. 1975, 26, 135–142. [Google Scholar]
- Müftüoğlu, Y.V.; Scoble, M.J. Kömür açık işletmeciliğinde kazılabilirliği belirleme yöntemleri; Türkiye Madencilik Bilimsel ve Teknik 9. Kongresi: Ankara, Turkey, 1985; pp. 29–37. [Google Scholar]
- Bozdağ, T. Indirect Rippability Assessment of Coal Measure Rocks. Middle East Technical University. 1988. Available online: https://hdl.handle.net/11511/7640 (accessed on 1 November 2025).
- Kramadibrata, S. The Influence of Rock Mass and Intact Rock Properties on The Design of Surface Mines with Particular Reference to The Excavatability of Rock. Ph.D. Thesis, Curtin University of Technology, Bentley, Australia, 1996. [Google Scholar]
- Gurocak, Z.; Alemdag, S.; Zaman, M.M. Rock slope stability and excavatability assessment of rocks at the Kapikaya dam site, Turkey. Eng. Geol. 2008, 96, 17–27. [Google Scholar] [CrossRef]
- ISRM Commission on Testing Methods, Working Group on Revision of the Point Load Test Method. Suggested Method for Determining Point Load Strength (Coordinator Franklin, J.A.). Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1985, 22, 51–60. [CrossRef]
- Sonmez, H.; Gokceoglu, C.; Medley, E.W.; Tuncay, E.; Nefeslioglu, H.A. Estimating the uniaxial compressive strength of a volcanic bimrock. Int. J. Rock Mech. Min. Sci. 2006, 43, 554–561. [Google Scholar] [CrossRef]
- Dagdelenler, G.; Akcapinar Sezer, E.; Gökceoglu, C. Some non-linear models to predict the weathering degrees of a granitic rock from physical and mechanical parameters. Expert Syst. Appl. 2011, 38, 7476–7485. [Google Scholar] [CrossRef]
- Sonmez, B.; Dagdelenler, G.; Ozcan, N.T.; Ercanoglu, M.; Sonmez, H. Yapay Sinir Ağı Kullanılarak CPT Tabanlı Sıvılaşma Değerlendirme Abağının Geliştirilmesi. Yerbilimleri 2015, 36, 45–60. [Google Scholar] [CrossRef]
- Sonmez, H.; Ercanoglu, M.; Kalender, A.; Dagdelenler, G.; Tunusluoglu, M.C. Predicting uniaxial compressive strength and deformation modulus of volcanic bimrock considering engineering dimension. Int. J. Rock Mech. Min. Sci. 2016, 86, 91–103. [Google Scholar] [CrossRef]
- Yilmazkaya, E.; Dagdelenler, G.; Ozcelik, Y.; Sonmez, H. Prediction of mono-wire cutting machine performance parameters using artificial neural network and regression models. Eng. Geol. 2018, 239, 96–108. [Google Scholar] [CrossRef]
- Asteris, P.G.; Karoglou, M.; Skentou, A.D.; Vasconcelos, G.; He, M.; Bakolas, A.; Zhou, J.; Armaghani, D.J. Predicting uniaxial compressive strength of rocks using ANN models: Incorporating porosity, compressional wave velocity, and schmidt hammer data. Ultrasonics 2024, 141, 107347. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, R.; Zhang, A.; Wang, X.; Wang, J.; Ren, L.; Zhang, Z.; Zhang, Z. Rock strength prediction based on machine learning: A study from prediction model to mechanism explanation. Measurement 2024, 230, 115373. [Google Scholar] [CrossRef]
- Zhao, G.-F.; Wu, Y. Artificial intelligence in rock mechanics. Int. J. Rock Mech. Min. Sci. 2025, 195, 106245. [Google Scholar] [CrossRef]
- Basheer, I.A.; Hajmeer, M. Aritificial neural networks: Fundamentals, computing, design and application. J. Microbiol. Methoda 2000, 43, 3–31. [Google Scholar] [CrossRef] [PubMed]
- Alvarez Grima, M. Neuro-Fuzzy Modeling in Engineering Geology. Doctoral Thesis, Balkema, Rotterdam, The Netherlands, 2000; p. 244. Available online: https://resolver.tudelft.nl/uuid:bfdd88ce-d38b-4be2-be7e-033abfff35b6 (accessed on 1 November 2025).
- Sonmez, H.; Gokceoglu, C. Discussion on the paper by H. Gullu and E. Ercelebi “A neural network approach for attenuation relationships: An application using strong ground motion data from Turkey (in press)”. Eng. Geol. 2008, 97, 91–93. [CrossRef]
- Hecht-Nielsen, R. Kolmogorov’s mapping neural network existence theorem. In Proceedings of the First IEEE International Conference on Neural Networks, San Diego, CA, USA, 21–24 June 1987; pp. 11–14. [Google Scholar]
- Hush, D.R. Classification with neural networks: A performance analysis. In Proceedings of the 1989 International Conference on Systems Engineering, Fairborn, OH, USA, 24–26 August 1989; pp. 277–280. [Google Scholar]
- Ripley, B.D. Statistical aspects of neural networks. In Networks and Chaos—Statistical and Probabilistic Aspects; Barndoff-Neilsen Jensen, O.E., Jensen, J.L., Kendall, W.S., Eds.; Chapman & Hall: London, UK, 1993; pp. 40–123. [Google Scholar]
- Wang, C. A Theory of Generalization in Learning Machines with Neural Application. Ph.D. Thesis, The University of Pennsylvania, Philadelphia, PA, USA, 1994. [Google Scholar]
- Masters, T. Practical Neural Network Recipes in C++; Academic Press: Boston, MA, USA, 1994. [Google Scholar]
- Kaastra, I.; Boyd, M. Designing a neural network for forecasting financial and economic time series. Neurocomputing 1996, 10, 215–236. [Google Scholar] [CrossRef]
- Kanellopoulas, I.; Wilkinson, G.G. Strategies and best practice for neural network image classification. Int. J. Remote Sens. 1997, 18, 711–725. [Google Scholar] [CrossRef]











| Method of Excavation | Digger | Ripper_E (Easy, D6 to D8) (R_E) | Ripper_H (Hard, D9 to D11) (R_H) | Hammer | Blasting “from Weak (to Loosen) to Strong” |
|---|---|---|---|---|---|
| Excavation Power Index (EPI) | 10 (0–20) | 30 (21–40) | 50 (41–60) | 70 (61–80) | 90 (81–100) |
| Heuristic Approach | Reference | Calculated Total Number of Neuron in This Study |
|---|---|---|
| Hecht-Nielsen [42] | 5 | |
| 3 | Hush [43] | 6 |
| Ripley [44] | 2 | |
| Wang [45] | 2 | |
| Masters [46] Kaastra and Boyd [47] | 2 | |
| Kannellopoulas and Wilkinson [48] | 4 |
| ANN Model | Relation of Cross-Correlation | RMSE | VAF (%) | MAPE (%) | R2 |
|---|---|---|---|---|---|
| 2–2–1 | Y = 0.8812X | 0.1390 | 78.86 | 32.94 | 0.7418 |
| 2–3–1 | Y = 0.8687X | 0.1435 | 77.74 | 34.11 | 0.7222 |
| 2–4–1 | Y = 0.8644X | 0.1445 | 77.73 | 33.26 | 0.7289 |
| 2–5–1 | Y = 8.8573X | 0.1468 | 77.38 | 33.03 | 0.7275 |
| 2–6–1 | Y = 0.8440X | 0.1518 | 76.10 | 34.41 | 0.7037 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dagdelenler, G. An ANN–Driven Excavatability Chart Integrating GSI and Rock Mass Strength. Appl. Sci. 2025, 15, 11821. https://doi.org/10.3390/app152111821
Dagdelenler G. An ANN–Driven Excavatability Chart Integrating GSI and Rock Mass Strength. Applied Sciences. 2025; 15(21):11821. https://doi.org/10.3390/app152111821
Chicago/Turabian StyleDagdelenler, Gulseren. 2025. "An ANN–Driven Excavatability Chart Integrating GSI and Rock Mass Strength" Applied Sciences 15, no. 21: 11821. https://doi.org/10.3390/app152111821
APA StyleDagdelenler, G. (2025). An ANN–Driven Excavatability Chart Integrating GSI and Rock Mass Strength. Applied Sciences, 15(21), 11821. https://doi.org/10.3390/app152111821

