Adaptive Multi-Scale Feature Learning Module for Pediatric Pneumonia Recognition in Chest X-Rays
Abstract
1. Introduction
- This study adapts the IncMB module for grayscale pediatric chest X-ray analysis, overcoming the limitations of traditional CNNs designed for RGB images. By leveraging the Mish activation function for smoother gradients and Batch Normalization for robust regularization, the module achieves enhanced feature extraction in monochromatic medical images, improving pneumonia classification accuracy.
- This study rigorously evaluates the IncMB module’s integration into established CNN architectures on a publicly available pediatric CXR dataset, demonstrating its balanced trade-off between computational efficiency and diagnostic performance. The module’s design inherently reduces parameter growth compared to conventional multi-branch architectures while maintaining competitive accuracy.
- This work bridges the gap between adult-trained deep learning models and pediatric-specific diagnostic needs by optimizing feature learning for subtle, diffuse radiographic patterns unique to children. The adapted IncMB module enhances sensitivity to small lesions and viral pneumonia manifestations, supporting more accurate and accessible AI-driven diagnosis in pediatric healthcare.
2. Related Works
3. Materials and Methods
3.1. Data Preparation and Experimental Setup
3.2. Model Architecture and Adapted IncMB Module
- The Inception architecture: This foundational design enables efficient multi-branch processing, allowing the network to concurrently extract features at different spatial scales. This is achieved through parallel convolutions employing various kernel sizes and a pooling branch [55,56]. Moreover, its inherent multi-scale capacity is particularly well-suited for pediatric pneumonia recognition, where pathologies can manifest as small, poorly defined opacities or as broader, more diffuse patterns [28].
- Batch Normalization: The IncMB module also incorporates Batch Normalization after the convolution and activation stages. This crucial regularization mechanism ensures that internal covariate shift is minimized and that feature distributions remain stable throughout the training process [59]. This leads to faster convergence, the ability to utilize higher learning rates, and a reduced risk of overfitting—all critical considerations when working with relatively small and potentially imbalanced pediatric datasets.
3.3. Pediatric Pneumonia Performance Evaluation
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Detailed Pseudocode for CNN Training and Evaluation with Adapted IncMB Module
| Algorithm A1: Training and Evaluation of CNN with Adapted IncMB Module |
|
References
- Altalhi, A. Review: Pediatric Pneumonia, Etiology, Diagnosis and Management. 2020. Available online: https://www.iajps.com/March-2020/issue_20march_171.php (accessed on 8 October 2025).
- Crame, E.; Shields, M.D.; McCrossan, P. Paediatric Pneumonia: A Guide to Diagnosis, Investigation and Treatment. Paediatr. Child Health 2021, 31, 250–257. [Google Scholar] [CrossRef]
- Barson, W.J.; Kaplan, S.; Torchia, M. Pneumonia in Children: Epidemiology, Pathogenesis, and Etiology. UpToDate Walth. MAAccessed January 28 2018. 2014. Available online: http://bvndtp.org.vn/wp-content/uploads/2017/01/Pneumonia-in-childre1.doc (accessed on 8 October 2025).
- de Benedictis, F.M.; Kerem, E.; Chang, A.B.; Colin, A.A.; Zar, H.J.; Bush, A. Complicated Pneumonia in Children. Lancet 2020, 396, 786–798. [Google Scholar] [CrossRef]
- Jutzeler, C.R.; Bourguignon, L.; Weis, C.; Tong, B.; Wong, C.; Rieck, B.; Pargger, H.; Tschudin-Sutter, S.; Egli, A.; Borgwardt, K.; et al. Comorbidities, Clinical Signs and Symptoms, Laboratory Findings, Imaging Features, Treatment Strategies, and Outcomes in Adult and Pediatric Patients with COVID-19: A Systematic Review and Meta-Analysis. Travel Med. Infect. Dis. 2020, 37, 101825. [Google Scholar] [CrossRef] [PubMed]
- Wilkes, C.; Bava, M.; Graham, H.R.; Duke, T. ARI Review group What Are the Risk Factors for Death among Children with Pneumonia in Low- and Middle-Income Countries? A Systematic Review. J. Glob. Health 2023, 13, 05003. [Google Scholar] [CrossRef]
- Wu, Y.; Rocha, B.M.; Kaimakamis, E.; Cheimariotis, G.-A.; Petmezas, G.; Chatzis, E.; Kilintzis, V.; Stefanopoulos, L.; Pessoa, D.; Marques, A.; et al. A Deep Learning Method for Predicting the COVID-19 ICU Patient Outcome Fusing X-Rays, Respiratory Sounds, and ICU Parameters. Expert Syst. Appl. 2024, 235, 121089. [Google Scholar] [CrossRef]
- Pneumonia in Children. Available online: https://www.who.int/news-room/fact-sheets/detail/pneumonia (accessed on 27 June 2025).
- Frigati, L.; Greybe, L.; Andronikou, S.; Eber, E.; Sunder, B.; Venkatakrishna, S.; Goussard, P. Respiratory Infections in Low and Middle-Income Countries. Paediatr. Respir. Rev. 2025, 54, 43–51. [Google Scholar] [CrossRef]
- Nisar, O.; Nisar, S.; Khattak Haroon Ur Rashid, S.; Ibne Ali Jaffari, S.M.; Haider, Z.; Fatima, F.; Zahra, S.E.; Ijaz, A.H.; Kaneez, M.; Shairwani, G.K. Clinical and Etiological Exploration of Ventilator-Associated Pneumonia in the Intensive Care Unit of a Developing Country. Cureus 2023, 15, e47515. [Google Scholar] [CrossRef] [PubMed]
- Rudan, I.; O’brien, K.L.; Nair, H.; Liu, L.; Theodoratou, E.; Qazi, S.; Lukšić, I.; Walker, C.L.F.; Black, R.E.; Campbell, H. Epidemiology and Etiology of Childhood Pneumonia in 2010: Estimates of Incidence, Severe Morbidity, Mortality, Underlying Risk Factors and Causative Pathogens for 192 Countries. J. Glob. Health 2013, 3, 010401. [Google Scholar]
- Wen, R.; Xu, P.; Cai, Y.; Wang, F.; Li, M.; Zeng, X.; Liu, C. A Deep Learning Model for the Diagnosis and Discrimination of Gram-Positive and Gram-Negative Bacterial Pneumonia for Children Using Chest Radiography Images and Clinical Information. Infect. Drug Resist. 2023, 16, 4083–4092. [Google Scholar] [CrossRef]
- Guitart, C.; Bobillo-Perez, S.; Rodríguez-Fanjul, J.; Carrasco, J.L.; Brotons, P.; López-Ramos, M.G.; Cambra, F.J.; Balaguer, M.; Jordan, I. Lung Ultrasound and Procalcitonin, Improving Antibiotic Management and Avoiding Radiation Exposure in Pediatric Critical Patients with Bacterial Pneumonia: A Randomized Clinical Trial. Eur. J. Med. Res. 2024, 29, 222. [Google Scholar] [CrossRef]
- Biagi, C.; Cavallo, A.; Rocca, A.; Pierantoni, L.; Antonazzo, D.; Dondi, A.; Gabrielli, L.; Lazzarotto, T.; Lanari, M. Pulmonary and Extrapulmonary Manifestations in Hospitalized Children with Mycoplasma Pneumoniae Infection. Microorganisms 2021, 9, 2553. [Google Scholar] [CrossRef]
- Geanacopoulos, A.T.; Lipsett, S.C.; Hirsch, A.W.; Monuteaux, M.C.; Neuman, M. Impact of Viral Radiographic Features on Antibiotic Treatment for Pediatric Pneumonia. J. Pediatr. Infect. Dis. Soc. 2022, 11, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Liu, X.; Shen, J.; Wang, C.; Li, Z.; Ye, L.; Wu, X.; Chen, T.; Wang, K.; Zhang, X.; et al. A Deep-Learning Pipeline for the Diagnosis and Discrimination of Viral, Non-Viral and COVID-19 Pneumonia from Chest X-Ray Images. Nat. Biomed. Eng. 2021, 5, 509–521. [Google Scholar] [CrossRef] [PubMed]
- Al Nufaiei, Z.F.; Alshamrani, K.M. Comparing Ultrasound, Chest X-Ray, and CT Scan for Pneumonia Detection. Med. Devices 2025, 18, 149–159. [Google Scholar] [CrossRef]
- Bayhan, G.İ.; Gülleroğlu, N.B.; Çetin, S.; Erat, T.; Yıldız, S.; Özen, S.; Konca, H.K.; Yahşi, A.; Dinç, B. Radiographic Findings of Adenoviral Pneumonia in Children. Clin. Imaging 2024, 108, 110111. [Google Scholar] [CrossRef]
- Fancourt, N.; Deloria Knoll, M.; Barger-Kamate, B.; de Campo, J.; de Campo, M.; Diallo, M.; Ebruke, B.E.; Feikin, D.R.; Gleeson, F.; Gong, W.; et al. Standardized Interpretation of Chest Radiographs in Cases of Pediatric Pneumonia From the PERCH Study. Clin. Infect. Dis. 2017, 64, S253–S261. [Google Scholar] [CrossRef]
- Balk, D.S.; Lee, C.; Schafer, J.; Welwarth, J.; Hardin, J.; Novack, V.; Yarza, S.; Hoffmann, B. Lung Ultrasound Compared to Chest X-Ray for Diagnosis of Pediatric Pneumonia: A Meta-Analysis. Pediatr. Pulmonol. 2018, 53, 1130–1139. [Google Scholar] [CrossRef]
- Pereda, M.A.; Chavez, M.A.; Hooper-Miele, C.C.; Gilman, R.H.; Steinhoff, M.C.; Ellington, L.E.; Gross, M.; Price, C.; Tielsch, J.M.; Checkley, W. Lung Ultrasound for the Diagnosis of Pneumonia in Children: A Meta-Analysis. Pediatrics 2015, 135, 714–722. [Google Scholar] [CrossRef] [PubMed]
- Pagano, A.; Numis, F.G.; Visone, G.; Pirozzi, C.; Masarone, M.; Olibet, M.; Nasti, R.; Schiraldi, F.; Paladino, F. Lung Ultrasound for Diagnosis of Pneumonia in Emergency Department. Intern. Emerg. Med. 2015, 10, 851–854. [Google Scholar] [CrossRef]
- Delijani, K.; Price, M.C.; Little, B.P. Community and Hospital Acquired Pneumonia. Semin. Roentgenol. 2022, 57, 3–17. [Google Scholar] [CrossRef]
- Lafraxo, S.; El Ansari, M.; Koutti, L. A New Hybrid Approach for Pneumonia Detection Using Chest X-Rays Based on ACNN-LSTM and Attention Mechanism. Multimed. Tools Appl. 2024, 83, 73055–73077. [Google Scholar] [CrossRef]
- Dzhaynakbaev, N.; Kurmanbekkyzy, N.; Baimakhanova, A.; Mussatayeva, I. 2D-CNN Architecture for Accurate Classification of COVID-19 Related Pneumonia on X-Ray Images. Int. J. Adv. Comput. Sci. Appl. IJACSA 2024, 15, 905–917. [Google Scholar] [CrossRef]
- Radočaj, P.; Radočaj, D.; Martinović, G. Pediatric Pneumonia Recognition Using an Improved DenseNet201 Model with Multi-Scale Convolutions and Mish Activation Function. Algorithms 2025, 18, 98. [Google Scholar] [CrossRef]
- AlGhamdi, A.S. Efficient Deep Learning Approach for the Classification of Pneumonia in Infants from Chest X-Ray Images. Trait. Signal 2024, 41, 1245–1262. [Google Scholar] [CrossRef]
- Radočaj, P.; Martinović, G. Interpretable Deep Learning for Pediatric Pneumonia Diagnosis Through Multi-Phase Feature Learning and Activation Patterns. Electronics 2025, 14, 1899. [Google Scholar] [CrossRef]
- Pan, Z.; Wang, H.; Wan, J.; Zhang, L.; Huang, J.; Shen, Y. Efficient Federated Learning for Pediatric Pneumonia on Chest X-Ray Classification. Sci. Rep. 2024, 14, 23272. [Google Scholar] [CrossRef]
- Stephen, O.; Sain, M.; Maduh, U.J.; Jeong, D.-U. An Efficient Deep Learning Approach to Pneumonia Classification in Healthcare. J. Healthc. Eng. 2019, 2019, 4180949. [Google Scholar] [CrossRef]
- Liu, W.; Hu, J.; Lv, F.; Tang, Z. A New Method for Long-Term Temperature Compensation of Structural Health Monitoring by Ultrasonic Guided Wave. Measurement 2025, 252, 117310. [Google Scholar] [CrossRef]
- De Oliveira, A.P.; Tadeu Braga, H.F. Artificial Intelligence: Learning and Limitations. WSEAS Trans. Adv. Eng. Educ. 2020, 17, 80–86. [Google Scholar] [CrossRef]
- Chen, Q.; Chen, L.; Nie, W.; Li, X.; Zheng, J.; Zhong, J.; Wei, Y.; Zhang, Y.; Ji, R. A Mixed-Scale Dynamic Attention Transformer for Pediatric Pneumonia Diagnosis. Displays 2025, 87, 102953. [Google Scholar] [CrossRef]
- Morcos, G.; Yi, P.H.; Jeudy, J. Applying Artificial Intelligence to Pediatric Chest Imaging: Reliability of Leveraging Adult-Based Artificial Intelligence Models. J. Am. Coll. Radiol. JACR 2023, 20, 742–747. [Google Scholar] [CrossRef] [PubMed]
- Hung, C.-L.; Hsin, C.; Wang, H.-H.; Tang, C.Y. Optimization of GPU Memory Usage for Training Deep Neural Networks. In Pervasive Systems, Algorithms and Networks; Esposito, C., Hong, J., Choo, K.-K.R., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 289–293. [Google Scholar]
- Liang, G.; Zheng, L. A Transfer Learning Method with Deep Residual Network for Pediatric Pneumonia Diagnosis. Comput. Methods Programs Biomed. 2020, 187, 104964. [Google Scholar] [CrossRef]
- Luján-García, J.E.; Yáñez-Márquez, C.; Villuendas-Rey, Y.; Camacho-Nieto, O. A Transfer Learning Method for Pneumonia Classification and Visualization. Appl. Sci. 2020, 10, 2908. [Google Scholar] [CrossRef]
- Burns, J.L.; Zaiman, Z.; Vanschaik, J.; Luo, G.; Peng, L.; Price, B.; Mathias, G.; Mittal, V.; Sagane, A.; Tignanelli, C.; et al. Ability of Artificial Intelligence to Identify Self-Reported Race in Chest X-Ray Using Pixel Intensity Counts. J. Med. Imaging Bellingham Wash 2023, 10, 061106. [Google Scholar] [CrossRef]
- Lee, P.; Tahmasebi, A.; Dave, J.K.; Parekh, M.R.; Kumaran, M.; Wang, S.; Eisenbrey, J.R.; Donuru, A. Comparison of Gray-Scale Inversion to Improve Detection of Pulmonary Nodules on Chest X-Rays Between Radiologists and a Deep Convolutional Neural Network. Curr. Probl. Diagn. Radiol. 2023, 52, 180–186. [Google Scholar] [CrossRef]
- Bhatt, D.; Patel, C.; Talsania, H.; Patel, J.; Vaghela, R.; Pandya, S.; Modi, K.; Ghayvat, H. CNN Variants for Computer Vision: History, Architecture, Application, Challenges and Future Scope. Electronics 2021, 10, 2470. [Google Scholar] [CrossRef]
- Neuman, M.I.; Lee, E.Y.; Bixby, S.; Diperna, S.; Hellinger, J.; Markowitz, R.; Servaes, S.; Monuteaux, M.C.; Shah, S.S. Variability in the Interpretation of Chest Radiographs for the Diagnosis of Pneumonia in Children. J. Hosp. Med. 2012, 7, 294–298. [Google Scholar] [CrossRef]
- An, J.; Kpeyiton, K.G.; Shi, Q. Grayscale Images Colorization with Convolutional Neural Networks. Soft Comput. 2020, 24, 4751–4758. [Google Scholar] [CrossRef]
- Sotirov, S.; Orozova, D.; Angelov, B.; Sotirova, E.; Vylcheva, M. Transforming Pediatric Healthcare with Generative AI: A Hybrid CNN Approach for Pneumonia Detection. Electronics 2025, 14, 1878. [Google Scholar] [CrossRef]
- Prakash, J.A.; Asswin, C.R.; Kumar, K.S.D.; Dora, A.; Ravi, V.; Sowmya, V.; Gopalakrishnan, E.A.; Soman, K.P. Transfer Learning Approach for Pediatric Pneumonia Diagnosis Using Channel Attention Deep CNN Architectures. Eng. Appl. Artif. Intell. 2023, 123, 106416. [Google Scholar] [CrossRef]
- Lan, X.; Zhang, Y.; Yuan, W.; Shi, F.; Guo, W. Image-Based Deep Learning in Diagnosing Mycoplasma Pneumonia on Pediatric Chest X-Rays. BMC Pediatr. 2024, 24, 720. [Google Scholar] [CrossRef] [PubMed]
- Khan, E.; Rehman, M.Z.U.; Ahmed, F.; Alfouzan, F.A.; Alzahrani, N.M.; Ahmad, J. Chest X-Ray Classification for the Detection of COVID-19 Using Deep Learning Techniques. Sensors 2022, 22, 1211. [Google Scholar] [CrossRef]
- Wang, K.; Jiang, P.; Meng, J.; Jiang, X. Attention-Based DenseNet for Pneumonia Classification. IRBM 2022, 43, 479–485. [Google Scholar] [CrossRef]
- Napravnik, M.; Hržić, F.; Urschler, M.; Miletić, D.; Štajduhar, I. Lessons Learned from RadiologyNET Foundation Models for Transfer Learning in Medical Radiology. Sci. Rep. 2025, 15, 21622. [Google Scholar] [CrossRef]
- Mei, X.; Liu, Z.; Robson, P.M.; Marinelli, B.; Huang, M.; Doshi, A.; Jacobi, A.; Cao, C.; Link, K.E.; Yang, T.; et al. RadImageNet: An Open Radiologic Deep Learning Research Dataset for Effective Transfer Learning. Radiol. Artif. Intell. 2022, 4, e210315. [Google Scholar] [CrossRef]
- Woerner, S.; Baumgartner, C.F. Navigating Data Scarcity Using Foundation Models: A Benchmark of Few-Shot and Zero-Shot Learning Approaches in Medical Imaging. In Foundation Models for General Medical AI; Deng, Z., Shen, Y., Kim, H.J., Jeong, W.-K., Aviles-Rivero, A.I., He, J., Zhang, S., Eds.; Springer Nature Switzerland: Cham, Switzerland, 2025; pp. 30–39. [Google Scholar]
- Radočaj, P.; Radočaj, D.; Martinović, G. Image-Based Leaf Disease Recognition Using Transfer Deep Learning with a Novel Versatile Optimization Module. Big Data Cogn. Comput. 2024, 8, 52. [Google Scholar] [CrossRef]
- Kermany, D.S.; Goldbaum, M.; Cai, W.; Valentim, C.C.S.; Liang, H.; Baxter, S.L.; McKeown, A.; Yang, G.; Wu, X.; Yan, F.; et al. Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning. Cell 2018, 172, 1122–1131. [Google Scholar] [CrossRef] [PubMed]
- Team, K. Keras Documentation: Keras 3 API Documentation. Available online: https://keras.io/api/ (accessed on 29 June 2025).
- Module: Tf|TensorFlow v2.16.1. Available online: https://www.tensorflow.org/api_docs/python/tf (accessed on 29 June 2025).
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with Convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- McNeely-White, D.; Beveridge, J.R.; Draper, B.A. Inception and ResNet Features Are (Almost) Equivalent. Cogn. Syst. Res. 2020, 59, 312–318. [Google Scholar] [CrossRef]
- Misra, D. Mish: A Self Regularized Non-Monotonic Activation Function. Misra, Diganta. In Proceedings of the British Machine Vision Conference 2020, Online, 7–10 September 2020. [Google Scholar]
- Radočaj, P.; Radočaj, D.; Martinović, G. Optimizing Convolutional Neural Network Architectures with Optimal Activation Functions for Pediatric Pneumonia Diagnosis Using Chest X-Rays. Big Data Cogn. Comput. 2025, 9, 25. [Google Scholar] [CrossRef]
- Batch Normalization|Proceedings of the 32nd International Conference on International Conference on Machine Learning—Volume 37. Available online: https://dl.acm.org/doi/10.5555/3045118.3045167 (accessed on 30 June 2025).
- Diallo, R.; Edalo, C.; Awe, O.O. Machine Learning Evaluation of Imbalanced Health Data: A Comparative Analysis of Balanced Accuracy, MCC, and F1 Score. In Practical Statistical Learning and Data Science Methods: Case Studies from LISA 2020 Global Network, USA; Awe, O.O., Vance, E.A., Eds.; Springer Nature Switzerland: Cham, Switzerland, 2025; pp. 283–312. ISBN 978-3-031-72215-8. [Google Scholar]
- Naidu, G.; Zuva, T.; Sibanda, E.M. A Review of Evaluation Metrics in Machine Learning Algorithms. In Artificial Intelligence Application in Networks and Systems; Silhavy, R., Silhavy, P., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 15–25. [Google Scholar]
- Srivastava, R.; Pandey, D.R.; Singh, A.K. Comparative Analysis of Radiological and Machine Learning-Based Interpretations for Differentiating COVID-19 and Pneumonia. Recent Adv. Electr. Electron. Eng. 2025, 18, 850–861. [Google Scholar] [CrossRef]
- Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning|Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence. Available online: https://dl.acm.org/doi/10.5555/3298023.3298188 (accessed on 30 June 2025).
- Lin, B.; Su, H.; Li, D.; Feng, A.; Li, H.; Li, J.; Jiang, K.; Jiang, H.; Gong, X.; Liu, T. PlaneNet: An Efficient Local Feature Extraction Network. PeerJ Comput. Sci. 2021, 7, e783. [Google Scholar] [CrossRef]
- Segu, M.; Tonioni, A.; Tombari, F. Batch Normalization Embeddings for Deep Domain Generalization. Pattern Recognit. 2023, 135, 109115. [Google Scholar] [CrossRef]
- Understanding Batch Normalization|Proceedings of the 32nd International Conference on Neural Information Processing Systems. Available online: https://dl.acm.org/doi/10.5555/3327757.3327868 (accessed on 30 June 2025).
- Merkow, J.; Soin, A.; Long, J.; Cohen, J.P.; Saligrama, S.; Bridge, C.; Yang, X.; Kaiser, S.; Borg, S.; Tarapov, I.; et al. CheXstray: A Real-Time Multi-Modal Monitoring Workflow for Medical Imaging AI. In Medical Image Computing and Computer Assisted Intervention—MICCAI 2023; Greenspan, H., Madabhushi, A., Mousavi, P., Salcudean, S., Duncan, J., Syeda-Mahmood, T., Taylor, R., Eds.; Springer Nature Switzerland: Cham, Switzerland, 2023; pp. 326–336. [Google Scholar]
- Characterizing Parameter Scaling with Quantization for Deployment of CNNs on Real-Time Systems|ACM Transactions on Embedded Computing Systems. Available online: https://dl.acm.org/doi/full/10.1145/3654799 (accessed on 30 June 2025).
- Singh, M.P.; Singh, J.; Ravi, V.; Gupta, A.D.; Alahmadi, T.J.; Shivahare, B.D.; Diwakar, M.; Tayal, M.; Singh, P. A Healthcare System Employing Lightweight CNN for Disease Prediction with Artificial Intelligence. Open Public Health J. 2024, 17, e18749445302023. [Google Scholar] [CrossRef]
- Barakat, N.; Awad, M.; Abu-Nabah, B.A. A Machine Learning Approach on Chest X-Rays for Pediatric Pneumonia Detection. Digit. Health 2023, 9, 20552076231180008. [Google Scholar] [CrossRef] [PubMed]
- Alsharif, R.; Al-Issa, Y.; Alqudah, A.M.; Qasmieh, I.A.; Mustafa, W.A.; Alquran, H. PneumoniaNet: Automated Detection and Classification of Pediatric Pneumonia Using Chest X-Ray Images and CNN Approach. Electronics 2021, 10, 2949. [Google Scholar] [CrossRef]
- Pham, N.H.; Tran, G.S. Apply a Cnn-Based Ensemble Model to Chest-x Ray Image-Based Pneumonia Classification. J. Adv. Inf. Technol. 2024, 15, 1205–1214. [Google Scholar] [CrossRef]
- Kareem, A.; Liu, H.; Velisavljevic, V. A Federated Learning Framework for Pneumonia Image Detection Using Distributed Data. Healthc. Anal. 2023, 4, 100204. [Google Scholar] [CrossRef]
- Patidar, M.; Pandey, G.; Koolagudi, S.G.; S, K.K.; Chandra, V. Enhancing Paediatric Healthcare: Deep Learning-Based Pneumonia Diagnosis from Children’s Chest X-Rays. In Proceedings of the 2024 Sixteenth International Conference on Contemporary Computing, Noida, India, 8–10 August 2024; Association for Computing Machinery: New York, NY, USA, 2024; pp. 128–135. [Google Scholar]






| Hyperparameter | Value |
|---|---|
| Number of epochs | 20 |
| Batch size | 32 |
| Optimizer | Adam |
| Adam β1, β2, ε | 0.9, 0.999, 1 × 10−7 |
| Initial learning rate | 0.001 |
| Minimum learning rate | 0.5 × 10−6 |
| Learning rate scheduler | Reduce on plateau |
| Transfer Deep Learning Model | Classification Approach | Accuracy | F1-Score | Precision | Recall | Specificity |
|---|---|---|---|---|---|---|
| InceptionV3 | Base model | 0.9633 | 0.9529 | 0.9592 | 0.9471 | 0.9117 |
| Base model with IncMB | 0.9710 | 0.9630 | 0.9659 | 0.9603 | 0.9369 | |
| InceptionResNetV2 | Base model | 0.9676 | 0.9595 | 0.9536 | 0.9659 | 0.9621 |
| Base model with IncMB | 0.9812 | 0.9761 | 0.9781 | 0.9742 | 0.9590 | |
| MobileNetV2 | Base model | 0.9113 | 0.8961 | 0.8763 | 0.9322 | 0.9779 |
| Base model with IncMB | 0.9582 | 0.9451 | 0.9640 | 0.9297 | 0.8675 | |
| DenseNet201 | Base model | 0.9676 | 0.9579 | 0.9704 | 0.9470 | 0.9022 |
| Base model with IncMB | 0.9727 | 0.9656 | 0.9629 | 0.9684 | 0.9590 |
| Transfer Deep Learning Model | Classification Approach | Healthy | Pneumonia |
|---|---|---|---|
| InceptionV3 | Base model | 0.9117 | 0.9825 |
| Base model with IncMB | 0.9369 | 0.9836 | |
| InceptionResNetV2 | Base model | 0.9621 | 0.9696 |
| Base model with IncMB | 0.9590 | 0.9895 | |
| MobileNetV2 | Base model | 0.9779 | 0.8865 |
| Base model with IncMB | 0.8675 | 0.9918 | |
| DenseNet201 | Base model | 0.9022 | 0.9918 |
| Base model with IncMB | 0.9590 | 0.9778 |
| Transfer Deep Learning Model | Classification Approach | 10 Epochs | 20 Epochs | ||||
|---|---|---|---|---|---|---|---|
| TA | VA | VL | TA | VA | VL | ||
| InceptionV3 | Base model | 0.9438 | 0.9479 | 0.1508 | 0.9640 | 0.9618 | 0.1235 |
| Base model with IncMB | 0.9700 | 0.9679 | 0.0910 | 0.9688 | 0.9740 | 0.0739 | |
| InceptionResNetV2 | Base model | 0.9811 | 0.9505 | 0.1287 | 0.9809 | 0.9766 | 0.0665 |
| Base model with IncMB | 0.9688 | 0.9679 | 0.0887 | 0.9688 | 0.9818 | 0.0547 | |
| MobileNetV2 | Base model | 0.9619 | 0.9392 | 0.2619 | 0.9616 | 0.9288 | 0.2459 |
| Base model with IncMB | 0.9656 | 0.9523 | 0.2056 | 0.9758 | 0.9601 | 0.1610 | |
| DenseNet201 | Base model | 0.9540 | 0.9340 | 0.1590 | 0.9688 | 0.9679 | 0.0857 |
| Base model with IncMB | 0.9588 | 0.9609 | 0.1176 | 0.9375 | 0.9731 | 0.0794 | |
| Transfer Deep Learning Model | Classification Approach | Total Parameters | Model Size (MB) |
|---|---|---|---|
| InceptionV3 | Base model | 22,982,561 | 87.67 |
| Base model with IncMB | 22,304,653 | 85.09 | |
| InceptionResNetV2 | Base model | 55,221,601 | 210.65 |
| Base model with IncMB | 54,734,157 | 208.79 | |
| MobileNetV2 | Base model | 2,995,393 | 11.43 |
| Base model with IncMB | 2,603,181 | 9.93 | |
| DenseNet201 | Base model | 19,428,033 | 74.11 |
| Base model with IncMB | 18,797,741 | 71.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radočaj, P.; Martinović, G.; Radočaj, D. Adaptive Multi-Scale Feature Learning Module for Pediatric Pneumonia Recognition in Chest X-Rays. Appl. Sci. 2025, 15, 11824. https://doi.org/10.3390/app152111824
Radočaj P, Martinović G, Radočaj D. Adaptive Multi-Scale Feature Learning Module for Pediatric Pneumonia Recognition in Chest X-Rays. Applied Sciences. 2025; 15(21):11824. https://doi.org/10.3390/app152111824
Chicago/Turabian StyleRadočaj, Petra, Goran Martinović, and Dorijan Radočaj. 2025. "Adaptive Multi-Scale Feature Learning Module for Pediatric Pneumonia Recognition in Chest X-Rays" Applied Sciences 15, no. 21: 11824. https://doi.org/10.3390/app152111824
APA StyleRadočaj, P., Martinović, G., & Radočaj, D. (2025). Adaptive Multi-Scale Feature Learning Module for Pediatric Pneumonia Recognition in Chest X-Rays. Applied Sciences, 15(21), 11824. https://doi.org/10.3390/app152111824

