Biomechanical Evaluation of Implant-Supported Three-Unit Bridge Designs and Retention Types in the Atrophic Posterior Maxilla Using Finite Element Analysis
Abstract
1. Introduction
- (1)
- Different bridge configurations (pontic, mesial cantilever, distal cantilever) would not significantly affect the biomechanical behavior of three-unit implant-supported prostheses.
- (2)
- The type of retention (screw-retained or cement-retained) would not significantly influence the biomechanical behavior of the prostheses.
- (3)
- The use of short implants in pontic and mesial cantilever designs would not adversely affect the stress distribution or mechanical stability of the implant-prosthesis complex.
2. Material and Methods
2.1. Design
2.2. Modeling of Implants and Prosthetic Components
2.3. Mesh Generation and Material Properties
2.4. Boundary Conditions and Loading
2.5. Validation and Benchmarking
3. Results
3.1. Models 1 and 2 (Distal Cantilever-1PM-2PM Implants)
3.2. Models 3 and 4 (Mesial Cantilever-2PM-1M Implants)
3.3. Models 5 and 6 (Conventional-1PM-1M Implants)
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| 3D | Three-Dimensional |
| Co-Cr | Cobalt–Chromium |
| FEA | Finite Element Analysis |
| MPa | Megapascal |
| N | Newton |
| μm | Micrometer |
| mm | Millimeter |
| D3 | Type III Bone |
| CAD | Computer-Aided Design |
| CAM | Computer-Aided Manufacturing |
| STL | Standard Tessellation Language |
References
- Sorni, M.; Guarinos, J.; García, O.; Peñarrocha, M. Implant Rehabilitation of the Atrophic Upper Jaw: A Review of the Literature since 1999. Med. Oral Patol. Oral Cir. Bucal. 2005, 10, E45–E56. [Google Scholar]
- Lekholm, U.; Zarb, G.A. Tissue Integrated Prosthesis: Osseointegration in Clinical Dentistry; Branemark, P., Zarb, G.A., Albrektsson, T., Eds.; Quintessence: Chicago, IL, USA, 1985; Chapter 12; pp. 199–209. [Google Scholar]
- Chrcanovic, B.R.; Albrektsson, T.; Wennerberg, A. Bone Quality and Quantity and Dental Implant Failure: A Systematic Review and Meta-Analysis. Int. J. Prosthodont. 2017, 30, 219–237. [Google Scholar] [CrossRef] [PubMed]
- Galindo-Moreno, P.; Padial-Molina, M.; Avila, G.; Rios, H.F.; Hernández-Cortés, P.; Wang, H.L. Complications Associated with Implant Migration into the Maxillary Sinus Cavity. Clin. Oral Implant. Res. 2012, 23, 1152–1160. [Google Scholar] [CrossRef] [PubMed]
- Vázquez, J.C.M.; de Rivera, A.S.G.; Gil, H.S.; Mifsut, R.S. Complication Rate in 200 Consecutive Sinus Lift Procedures: Guidelines for Prevention and Treatment. J. Oral Maxillofac. Surg. 2014, 72, 892–901. [Google Scholar] [CrossRef]
- Mester, A.; Onisor, F.; Di Stasio, D.; Piciu, A.; Cosma, A.-M.; Bran, S. Short Implants versus Standard Implants and Sinus Floor Elevation in Atrophic Posterior Maxilla: A Systematic Review and Meta-Analysis of Randomized Clinical Trials with ≥5 Years’ Follow-Up. J. Pers. Med. 2023, 13, 169. [Google Scholar] [CrossRef]
- Thoma, D.S.; Wolleb, K.; Schellenberg, R.; Strauss, F.J.; Hämmerle, C.H.; Jung, R.E. Two Short Implants versus One Short Implant with a Cantilever: 5-Year Results of a Randomized Clinical Trial. J. Clin. Periodontol. 2021, 48, 1480–1490. [Google Scholar] [CrossRef] [PubMed]
- Ravidà, A.; Serroni, M.; Borgnakke, W.S.; Romandini, M.; Wang, I.C.; Arena, C.; Annunziata, M.; Cecoro, G.; Saleh, M.H.A. Short (≤6 mm) Compared with ≥10-mm Dental Implants in Different Clinical Scenarios: A Systematic Review of Randomized Clinical Trials with Meta-Analysis, Trial Sequential Analysis, and Quality of Evidence Grading. J. Clin. Periodontol. 2024, 51, 936–965. [Google Scholar] [CrossRef]
- Clelland, N.; Chaudhry, J.; Rashid, R.G.; McGlumphy, E. Split-Mouth Comparison of Splinted and Nonsplinted Prostheses on Short Implants: 3-Year Results. Int. J. Oral Maxillofac. Implant. 2016, 31, 1135–1141. [Google Scholar] [CrossRef]
- Hasan, I.; Bourauel, C.; Mundt, T.; Heinemann, F. Biomechanics and Load Resistance of Short Dental Implants: A Review of the Literature. Int. Sch. Res. Not. 2013, 8, 424592. [Google Scholar] [CrossRef]
- Şahin, S.; Cehreli, M.C.; Yalçın, E. The Influence of Functional Forces on the Biomechanics of Implant-Supported Prostheses—A Review. J. Dent. 2002, 30, 271–282. [Google Scholar] [CrossRef]
- das Neves, F.D.; Fones, D.; Bernardes, S.R.; do Prado, C.J.; Neto, A.J.F. Short Implants—An Analysis of Longitudinal Studies. Int. J. Oral Maxillofac. Implant. 2006, 21, 86–93. [Google Scholar] [CrossRef]
- Jivraj, S.; Chee, W. Treatment Planning of Implants in Posterior Quadrants. Br. Dent. J. 2006, 201, 13–23. [Google Scholar] [CrossRef]
- Freitas da Silva, E.V.; dos Santos, D.M.; Vilela Sonego, M.; de Luna Gomes, J.M.; Pellizzer, E.P.; Coelho Goiato, M. Does the Presence of a Cantilever Influence the Survival and Success of Partial Implant-Supported Dental Prostheses? Systematic Review and Meta-Analysis. Int. J. Oral Maxillofac. Implant. 2018, 33, 815–823. [Google Scholar] [CrossRef] [PubMed]
- Romeo, E.; Lops, D.; Margutti, E.; Ghisolfi, M.; Chiapasco, M.; Vogel, G. Implant-Supported Fixed Cantilever Prostheses in Partially Edentulous Arches: A Seven-Year Prospective Study. Clin. Oral Implant. Res. 2003, 14, 303–311. [Google Scholar] [CrossRef]
- Shadid, R.; Sadaqa, N. A Comparison between Screw- and Cement-Retained Implant Prostheses: A Literature Review. J. Oral Implantol. 2012, 38, 298–307. [Google Scholar] [CrossRef]
- Chau, R.C.W.; Hsung, R.T.-C.; McGrath, C.; Pow, E.H.N.; Lam, W.Y.H. Accuracy of artificial intelligence-designed single-molar dental prostheses: A feasibility study. J. Prosthet. Dent. 2024, 131, 1111–1117. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Lee, J.K.Y.; Kwong, G.; Pow, E.H.N.; Tsoi, J.K.H. Morphology and fracture behavior of lithium disilicate dental crowns designed by human and knowledge-based AI. J. Mech. Behav. Biomed. Mater. 2022, 131, 105256. [Google Scholar] [CrossRef]
- Geng, J.-P.; Tan, K.B.; Liu, G.-R. Application of Finite Element Analysis in Implant Dentistry: A Review of the Literature. J. Prosthet. Dent. 2001, 85, 585–598. [Google Scholar] [CrossRef]
- Meyer, U.; Vollmer, D.; Runte, C.; Bourauel, C.; Joos, U.J. Bone loading pattern around implants in average and atrophic edentulous maxillae: A finite-element analysis. J. Cranio-Maxillofac. Surg. 2001, 29, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Prados-Privado, M.; Diederich, H.; Prados-Frutos, J.C. Implant treatment in atrophic maxilla by titanium hybrid-plates: A finite element study to evaluate the biomechanical behavior of plates. Metals 2018, 8, 573. [Google Scholar] [CrossRef]
- Li, A.; Mu, Z.; Zeng, B.; Shen, T.; Hu, R.; Wang, H.; Deng, H. Evaluation of two treatment concepts of four implants supporting fixed prosthesis in an atrophic maxilla: Finite element analysis. BMC Oral Health 2023, 23, 983. [Google Scholar] [CrossRef]
- Wheeler, R.C. An Atlas of Tooth Form; W.B. Saunders Company: Toronto, ON, Canada, 1969; Chapter 6; pp. 41–47. [Google Scholar]
- Sevimay, M.; Turhan, F.; Kiliçarslan, M.; Eskitascioglu, G. Three-Dimensional Finite Element Analysis of the Effect of Different Bone Quality on Stress Distribution in an Implant-Supported Crown. J. Prosthet. Dent. 2005, 93, 227–234. [Google Scholar] [CrossRef]
- Silva, G.C.; Cornacchia, T.M.; de Magalhães, C.S.; Bueno, A.C.; Moreira, A.N. Biomechanical Evaluation of Screw- and Cement-Retained Implant-Supported Prostheses: A Nonlinear Finite Element Analysis. J. Prosthet. Dent. 2014, 112, 1479–1488. [Google Scholar] [CrossRef]
- Silva, G.C.; de Andrade, G.M.; Coelho, R.C.P.; Cornacchia, T.M.; de Magalhães, C.S.; Moreira, A.N. Effects of Screw- and Cement-Retained Implant-Supported Prostheses on Bone: A Nonlinear 3D Finite Element Analysis. Implant Dent. 2015, 24, 464–471. [Google Scholar] [CrossRef]
- Himmlova, L.; Dostálová, T.; Kácovský, A.; Konvickova, S. Influence of Implant Length and Diameter on Stress Distribution: A Finite Element Analysis. J. Prosthet. Dent. 2004, 91, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Sütpideler, M.; Eckert, S.E.; Zobitz, M.; An, K.-N. Finite Element Analysis of the Effect of Prosthesis Height, Angle of Force Application, and Implant Offset on Supporting Bone. Int. J. Oral Maxillofac. Implant. 2004, 19, 819–825. [Google Scholar] [PubMed]
- İplikçioğlu, H.; Akça, K. Comparative Evaluation of the Effect of Diameter, Length, and Number of Implants Supporting Three-Unit Fixed Partial Prostheses on Stress Distribution in the Bone. J. Dent. 2002, 30, 41–46. [Google Scholar] [CrossRef]
- Barbier, L.; Vander Sloten, J.; Krzesinski, G.; Schepers, E.; Van der Perre, G. Finite Element Analysis of Non-Axial versus Axial Loading of Oral Implants in the Mandible of the Dog. J. Oral Rehabil. 1998, 25, 847–858. [Google Scholar] [CrossRef] [PubMed]
- Çağlar, A.; Aydın, C.; Özen, J.; Yılmaz, C.; Korkmaz, T. Effects of Mesiodistal Inclination of Implants on Stress Distribution in Implant-Supported Fixed Prostheses. Int. J. Oral Maxillofac. Implant. 2006, 21, 36–44. [Google Scholar]
- Holmes, D.C.; Diaz-Arnold, A.M.; Leary, J.M. Influence of Post Dimension on Stress Distribution in Dentin. J. Prosthet. Dent. 1996, 75, 140–147. [Google Scholar] [CrossRef]
- Alencar, S.M.; Nogueira, L.B.; Leal de Moura, W.; Rubo, J.H.; Saymo de Oliveira Silva, T.; Martins, G.A.S.; Moura, C.D.V.S. FEA of Peri-Implant Stresses in Fixed Partial Denture Prostheses with Cantilevers. J. Prosthodont. 2017, 26, 150–155. [Google Scholar] [CrossRef]
- Eskitascioglu, G.; Usumez, A.; Sevimay, M.; Soykan, E.; Unsal, E. The influence of occlusal loading location on stresses transferred to implant-supported prostheses and supporting bone: A three-dimensional finite element study. J. Prosthet. Dent. 2004, 91, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Cláudia, L.B.B.; Marcelo, F.M.; Daniel, T.K.; Pedro, Y.N.; Rafael, L.X.C.; Valentim, A.R.B. Comparison between all-on-four and all-on-six treatment concepts and framework material on stress distribution in atrophic maxilla: A prototyping guided 3D-FEA study. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 1, 715–725. [Google Scholar]
- Huang, H.-L.; Chang, C.-H.; Hsu, J.-T.; Ko, C.-C. Comparison of implant body designs and threaded designs of dental implants: A 3-dimensional finite element analysis. Int. J. Oral Maxillofac. Implant. 2007, 22, 551–562. [Google Scholar] [PubMed]
- Bozkaya, D.; Muftu, S.; Muftu, A. Evaluation of load transfer characteristics of five different implants in compact bone at different load levels by finite elements analysis. J. Prosthet. Dent. 2004, 92, 523–530. [Google Scholar] [CrossRef]
- Cenkoglu, B.G.; Balcioglu, N.B.; Ozdemir, T.; Mijiritsky, E. The Effect of the Length and Distribution of Implants for Fixed Prosthetic Reconstructions in the Atrophic Posterior Maxilla: A Finite Element Analysis. Materials 2019, 12, 2556. [Google Scholar] [CrossRef]
- de Souza Batista, V.E.; Verri, F.R.; Almeida, D.A.F.; Santiago Junior, J.F.; Lemos, C.A.A.; Pellizzer, E.P. Finite Element Analysis of Implant-Supported Prosthesis with Pontic and Cantilever in the Posterior Maxilla. Comput. Methods Biomech. Biomed. Engin. 2017, 20, 663–670. [Google Scholar] [CrossRef]
- Tuzlalı, M.; Öztürk, C.; Zortuk, M. The comparison of Stress Distribution in Screw- and Cement-Retained Implant-Supported Fixed Restorations: A Finite Element Analysis Study. J. Dental Sci. 2018, 24, 106–113. [Google Scholar]
- Lin, D.; Li, Q.; Li, W.; Swain, M. Dental Implant Induced Bone Remodeling and Associated Algorithms. J. Mech. Behav. Biomed. Mater. 2009, 2, 410–432. [Google Scholar] [CrossRef]
- Goodacre, C.J.; Bernal, G.; Rungcharassaeng, K.; Kan, J.Y. Clinical Complications with Implants and Implant Prostheses. J. Prosthet. Dent. 2003, 90, 121–132. [Google Scholar] [CrossRef]
- Mackerle, J. Finite Element Modelling and Simulations in Dentistry: A Bibliography 1990–2003. Comput. Methods Biomech. Biomed. Eng. 2004, 7, 277–303. [Google Scholar] [CrossRef]
- Moeen, F.; Nisar, S.; Dar, N. A Step by Step Guide to Finite Element Analysis in Dental Implantology. Pak. Oral Dent. J. 2014, 34, 165–169. [Google Scholar]
- Liu, S.; Liu, Y.; Xu, J.; Rong, Q.; Pan, S. Influence of occlusal contact and cusp inclination on the biomechanical character of a maxillary premolar: A finite element analysis. J. Prosthet. Dent. 2014, 112, 1238–1245. [Google Scholar] [CrossRef]
- Tang, C.-B.; Liu, S.-Y.; Zhou, G.-X.; Yu, J.-H.; Zhang, G.-D.; Bao, Y.-D.; Wang, Q.-J. Nonlinear Finite Element Analysis of Three Implant–Abutment Interface Designs. Int. J. Oral Sci. 2012, 4, 101–108. [Google Scholar] [CrossRef]
- Guven, S.; Atalay, Y.; Asutay, F.; Ucan, M.C.; Dundar, S.; Karaman, T.; Gunes, N. Comparison of the effects of different loading locations on stresses transferred to straight and angled implant-supported zirconia frameworks: A finite element method study. Biotechnol. Biotechnol. Equip. 2015, 29, 766–772. [Google Scholar] [CrossRef]
- Zampelis, A.; Rangert, B.; Heijl, L. Tilting of Splinted Implants for Improved Prosthodontic Support: A Two-Dimensional Finite Element Analysis. J. Prosthet. Dent. 2007, 97, S35–S43. [Google Scholar] [CrossRef] [PubMed]
- Arinc, H. Implant-Supported Fixed Partial Prostheses with Different Prosthetic Materials: A Three-Dimensional Finite Element Stress Analysis. Implant Dent. 2018, 27, 303–310. [Google Scholar] [CrossRef]
- Akça, K.; İplikçioğlu, H. Finite Element Stress Analysis of the Effect of Short Implant Usage in Place of Cantilever Extensions in Mandibular Posterior Edentulism. J. Oral Rehabil. 2002, 29, 350–356. [Google Scholar] [CrossRef]
- Ladd, A.J.; Kinney, J.H. Numerical Errors and Uncertainties in Finite-Element Modeling of Trabecular Bone. J. Biomech. 1998, 31, 941–945. [Google Scholar] [CrossRef] [PubMed]
- Lewinstein, I.; Banks-Sills, L.; Eliasi, R. Finite Element Analysis of a New System (IL) for Supporting an Implant-Retained Cantilever Prosthesis. Int. J. Oral Maxillofac. Implant. 1995, 10, 355–366. [Google Scholar]
- Cinar, D.; Imirzalioglu, P. The Effect of Three Different Crown Heights and Two Different Bone Types on Implants Placed in the Posterior Maxilla: Three-Dimensional Finite Element Analysis. Int. J. Oral Maxillofac. Implant. 2016, 31, e1–e10. [Google Scholar] [CrossRef]
- Demenko, V.; Linetsky, I.; Nesvit, V.; Linetska, L.; Shevchenko, A. FE Study of Bone Quality Effect on Load-Carrying Ability of Dental Implants. Comput. Methods Biomech. Biomed. Engin. 2014, 17, 1751–1761. [Google Scholar] [CrossRef] [PubMed]
- Abi-Aad, H.L.; Daher, F.I.; Baba, N.Z.; Cordioli, G.; Majzoub, Z.A. Insertion Torque of Variable-Thread Tapered Implants in the Posterior Maxilla: A Clinical Study. J. Prosthodont. 2019, 28, e788–e794. [Google Scholar] [CrossRef]
- Kan, J.Y.; Rungcharassaeng, K.; Kim, J.; Lozada, J.L.; Goodacre, C.J. Factors Affecting the Survival of Implants Placed in Grafted Maxillary Sinuses: A Clinical Report. J. Prosthet. Dent. 2002, 87, 485–489. [Google Scholar] [CrossRef] [PubMed]
- Atieh, M.A.; Zadeh, H.; Stanford, C.M.; Cooper, L.F. Survival of Short Dental Implants for Treatment of Posterior Partial Edentulism: A Systematic Review. Int. J. Oral Maxillofac. Implant. 2012, 27, 1323–1331. [Google Scholar]
- Esposito, M.; Barausse, C.; Pistilli, R.; Sammartino, G.; Grandi, G.; Felice, P. Short Implants versus Bone Augmentation for Placing Longer Implants in Atrophic Maxillae: One-Year Post-Loading Results of a Pilot Randomised Controlled Trial. Eur. J. Oral Implantol. 2015, 8, 257–268. [Google Scholar] [PubMed]
- Juodzbalys, G.; Kubilius, R.; Eidukynas, V.; Raustia, A.M. Stress Distribution in Bone: Single-Unit Implant Prostheses Veneered with Porcelain or a New Composite Material. Implant Dent. 2005, 14, 166–175. [Google Scholar] [CrossRef]
- Holmgren, E.P.; Seckinger, R.J.; Kilgren, L.M.; Mante, F. Evaluating Parameters of Osseointegrated Dental Implants Using Finite Element Analysis: A Two-Dimensional Comparative Study Examining the Effects of Implant Diameter, Implant Shape, and Load Direction. J. Oral Implantol. 1998, 24, 80–88. [Google Scholar] [CrossRef]
- Al-Johany, S.S. Survival Rates of Short Dental Implants (≤6.5 mm) Placed in Posterior Edentulous Ridges and Factors Affecting Their Survival after a 12-Month Follow-Up Period: Systematic Review. Int. J. Oral Maxillofac. Implant. 2019, 34, 605–621. [Google Scholar] [CrossRef]
- Yokoyama, S.; Wakabayashi, N.; Shiota, M.; Ohyama, T. The Influence of Implant Location and Length on Stress Distribution for Three-Unit Implant-Supported Posterior Cantilever Fixed Partial Dentures. J. Prosthet. Dent. 2004, 91, 234–240. [Google Scholar] [CrossRef]
- Sallam, H.; Kheiralla, L.S.; Aldawakly, A. Microstrains around Standard and Mini Implants Supporting Different Bridge Designs. J. Oral Implantol. 2012, 38, 221–229. [Google Scholar] [CrossRef]
- Doganay, O.; Kilic, E. Comparative Finite Element Analysis of Short Implants with Different Treatment Approaches in the Atrophic Mandible. Int. J. Oral Maxillofac. Implant. 2020, 35, e69–e76. [Google Scholar] [CrossRef]
- Yu, W.; Li, X.; Ma, X.; Xu, X. Biomechanical Analysis of Inclined and Cantilever Design with Different Implant Framework Materials in Mandibular Complete-Arch Implant Restorations. J. Prosthet. Dent. 2022, 127, 783.e1–783.e10. [Google Scholar] [CrossRef]
- Zhong, J.; Guazzato, M.; Chen, J.; Zhang, Z.; Sun, G.; Huo, X.; Liu, X.; Ahmad, R.; Li, Q. Effect of Different Implant Configurations on Biomechanical Behavior of Full-Arch Implant-Supported Mandibular Monolithic Zirconia Fixed Prostheses. J. Mech. Behav. Biomed. Mater. 2020, 102, 103490. [Google Scholar] [CrossRef]
- Fan, X.; Chen, L.; Chen, Q.; Wang, F.; Wu, Y.; Sun, Y. Influence of a Mesial Cantilever on Stress, Strain, and Axial Force in Fixed Partial Dentures with a Distally Tilted Implant in the Atrophic Posterior Maxilla. J. Prosthodont. Res. 2024, 68, 615–623. [Google Scholar] [CrossRef]
- Aboelfadl, A.; Keilig, L.; Ebeid, K.; Ahmed, M.A.M.; Nouh, I.; Refaie, A.; Bourauel, C. Biomechanical Behavior of Implant-Retained Prostheses in the Posterior Maxilla Using Different Materials: A Finite Element Study. BMC Oral Health 2024, 24, 455. [Google Scholar] [CrossRef]
- Nissan, J.; Narobai, D.; Gross, O.; Ghelfan, O.; Chaushu, G. Long-Term Outcome of Cemented versus Screw-Retained Implant-Supported Partial Restorations. Int. J. Oral Maxillofac. Implant. 2011, 26, 1102–1107. [Google Scholar] [PubMed]
- Reilly, D.T.; Burstein, A.H. The Elastic and Ultimate Properties of Compact Bone Tissue. J. Biomech. 1975, 8, 393–405. [Google Scholar] [CrossRef] [PubMed]
- Guichet, D.; Caputo, A.; Choi, H.; Sorensen, J. Load Transfer in Screw- and Cement-Retained Implant Fixed Partial Denture Designs. J. Prosthet. Dent. 1994, 72, 631–636. [Google Scholar]
- Kim, W.D.; Jacobson, Z.; Nathanson, D. In Vitro Stress Analyses of Dental Implants Supporting Screw-Retained and Cement-Retained Prostheses. Implant Dent. 1999, 8, 141–151. [Google Scholar] [CrossRef]
- Guichet, D.L.; Caputo, A.A.; Sorensen, J.A. Passivity of Fit and Marginal Opening in Screw- or Cement-Retained Implant Fixed Partial Denture Designs. Int. J. Oral Maxillofac. Implant. 2000, 15, 239–246. [Google Scholar] [PubMed]
- Karl, M.; Taylor, T.D.; Wichmann, M.G.; Heckmann, S.M. In Vivo Stress Behavior in Cemented and Screw-Retained Five-Unit Implant FPDs. J. Prosthodont. 2006, 15, 20–24. [Google Scholar] [CrossRef] [PubMed]
- Pellizzer, E.P.; Tonella, B.P.; Ferraço, R.; Falcón-Antenucci, R.M.; de Carvalho, P.S.P.; Alves-Rezende, M.C.R. Photoelastic Stress Analysis in Screwed and Cemented Implant-Supported Dentures with External Hexagon Implants. J. Craniofac. Surg. 2010, 21, 1110–1113. [Google Scholar] [CrossRef]
- Barausse, C.; Pistilli, R.; Bonifazi, L.; Tayeb, S.; Pellegrino, G.; Ravidà, A.; Felice, P. Four-mm-Short Implants in the Rehabilitation of Posterior Atrophic Jaws: A Retrospective Study on 212 Patients with a Mean Follow-Up of 8.02 Years. Clin. Oral Implant. Res. 2024, 35, 1607–1615. [Google Scholar] [CrossRef] [PubMed]







| Model | Screw Retained | Model | Cement Retained |
|---|---|---|---|
| 1 | C–2PM–1PM | 2 | C–2PM–1PM |
| 3 | 1M–2PM–C | 4 | 1M–2PM–C |
| 5 | 1M–P–1PM | 6 | 1M–P–1PM |
| Tooth | Crown Height | Mesiodistal Width |
|---|---|---|
| 1PM | 8.5 | 7 |
| 2PM | 8.5 | 7 |
| 1M | 7.5 | 10 |
| Material | Elastic Modul (Gpa) | Poisson’s Ratio | References |
|---|---|---|---|
| Titanium | 110 | 0.35 | [24,27,28,29] |
| Cortical Bone | 13.7 | 0.3 | [24,27,29,30,31] |
| Trabecular Bone (D3) | 1.37 | 0.3 | [24,28,31] |
| Cobalt-Chromium Alloy | 218 | 0.33 | [24,27] |
| Feldspathic Porcelain | 82.8 | 0.35 | [24,27] |
| Zinc Phosphate Cement | 22.4 | 0.25 | [32,33] |
| Model | Number of Elements | Number of Nodes |
|---|---|---|
| 1 | 1,961,319 | 369,617 |
| 2 | 1,635,192 | 319,779 |
| 3 | 1,623,964 | 310,393 |
| 4 | 1,303,485 | 256,903 |
| 5 | 1,562,741 | 305,012 |
| 6 | 1,303,231 | 256,612 |
| Model | 1PM | 2PM | 1M | Peak Location |
|---|---|---|---|---|
| 1 | 19.36 | 68.80 | C | 2PM disto-buccal collar |
| 2 | 51.77 | 100.14 | C | 2PM disto-buccal collar |
| 3 | C | 63.83 | 33.82 | 2PM mesial collar |
| 4 | C | 85.20 | 83.52 | 2PM mesio-buccal collar |
| 5 | 28.54 | P | 44.74 | 1PM buccal collar |
| 6 | 103.97 | P | 122.78 | 1M buccal collar |
| Model | 1PM | 2PM | 1M | Peak Location |
|---|---|---|---|---|
| 1 | 120.92 | 191.15 | C | 2PM disto-buccal collar |
| 2 | 80.57 | 138.12 | C | 2PM disto-buccal collar |
| 3 | C | 138.09 | 73.31 | 2PM mesio-buccal collar |
| 4 | C | 112.31 | 47.47 | 2PM mesio-buccal collar |
| 5 | 112.58 | P | 90.64 | 2PM buccal collar |
| 6 | 119.95 | P | 57.73 | 1PM buccal collar |
| Model | 1PM | 2PM | 1M | Peak Location |
|---|---|---|---|---|
| 1 | 73.41 | 115.78 | C | 2PM distal |
| 2 | 41.02 | 329.95 | C | 2PM distal |
| 3 | C | 123.32 | 92.63 | 2PM mesial |
| 4 | C | 106.71 | 60.69 | 2PM mesial |
| 5 | 58.97 | P | 81.23 | 1M mesio-buccal |
| 6 | 57.44 | P | 67.42 | 1M buccal |
| Model | 1PM (Max/Min) | 2PM (Max/Min) | M (Max/Min) | Peak Location |
|---|---|---|---|---|
| 1 | 10.25/1.79 | 7.08/23.69 | C | 1PM palatal collar/2 PM distal collar |
| 2 | 7.86/2.91 | 6.46/22.19 | C | 1PM palatal collar/2 PM distal collar |
| 3 | C | 7.25/10.59 | 4.60/12.43 | 2PM palatal collar/1PM distal |
| 4 | C | 6.31/9.92 | 3.08/13.20 | 2PM palatal collar/1M buccal |
| 5 | 9.01/8.95 | P | 4.46/20.38 | 1PM palatal collar/1M distal |
| 6 | 7.08/7.17 | P | 3.77/19.94 | 1PM palatal collar/1M distal |
| Model | 1PM (Max/Min) | 2PM (Max/Min) | M (Max/Min) | Peak Location |
|---|---|---|---|---|
| 1 | 1.38/0.70 | 1.66/1.57 | C | 1PM buccal collar/2PM distal collar |
| 2 | 0.70/0.57 | 1.69/1.53 | C | 1PM buccal collar/2PM distal collar |
| 3 | C | 1.17/0.72 | 0.90/0.85 | 2PM mesiobuccal collar/1M distobuccal collar |
| 4 | C | 1.36/0.56 | 0.59/1.05 | 2PM buccal collar/1M distobuccal collar |
| 5 | 2.10/0.35 | P | 0.69/1.23 | 1PM buccal collar/1M distobuccal collar |
| 6 | 1.24/0.48 | P | 0.65/1.37 | 1PM buccal collar/1M distobuccal collar |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yüksel Baysal, A.; Hayran, Y. Biomechanical Evaluation of Implant-Supported Three-Unit Bridge Designs and Retention Types in the Atrophic Posterior Maxilla Using Finite Element Analysis. Appl. Sci. 2025, 15, 11793. https://doi.org/10.3390/app152111793
Yüksel Baysal A, Hayran Y. Biomechanical Evaluation of Implant-Supported Three-Unit Bridge Designs and Retention Types in the Atrophic Posterior Maxilla Using Finite Element Analysis. Applied Sciences. 2025; 15(21):11793. https://doi.org/10.3390/app152111793
Chicago/Turabian StyleYüksel Baysal, Arzu, and Yeliz Hayran. 2025. "Biomechanical Evaluation of Implant-Supported Three-Unit Bridge Designs and Retention Types in the Atrophic Posterior Maxilla Using Finite Element Analysis" Applied Sciences 15, no. 21: 11793. https://doi.org/10.3390/app152111793
APA StyleYüksel Baysal, A., & Hayran, Y. (2025). Biomechanical Evaluation of Implant-Supported Three-Unit Bridge Designs and Retention Types in the Atrophic Posterior Maxilla Using Finite Element Analysis. Applied Sciences, 15(21), 11793. https://doi.org/10.3390/app152111793

