Microscopic Behavioral and Psychological Analysis of Road User Interactions in Shared Spaces
Featured Application
Abstract
1. Introduction
2. Literature Review
2.1. Behavior Analysis of Non-Motorized Shared Space Users
2.2. Psychology Analysis of Non-Motorized Shared Space Users
3. Methodology
3.1. Interaction Identification
3.2. Trajectory Extraction
3.3. Behavioral and Psychological Variable Calculations
3.4. Trajectory Key Points
3.4.1. Trajectory Key Points Identification
3.4.2. Psychological Starting and Ending Points
4. Data Description
4.1. Video Recordings
4.2. Interaction and Trajectory Data
5. Result
5.1. Opposite-Direction Interactions
5.1.1. Start Point
5.1.2. Psychological Starting Point
5.1.3. Farthest Point
5.1.4. Psychological Ending Point
5.1.5. Interaction End Point
5.1.6. Comparison of Speed by Interactions
5.1.7. Safety Zone
5.2. Same-Direction Interaction
5.2.1. Start Point
5.2.2. Psychological Starting Point
5.2.3. Farthest Point
5.2.4. Psychological Starting Point
5.2.5. End Point
5.2.6. Comparison of Road User Speed by Interaction
5.2.7. Safety Zone
6. Discussion
6.1. Changing Maneuver in the Lateral Direction
6.2. Road Users Have Higher Perceived Safety in the Swerve-Back Phase
6.3. Lateral Psychological Safety Distance
6.4. Road Users Carrying Large Items Perceive Higher Risk in Shared Spaces
6.5. Maneuvering Time Is a Crucial Psychological Defense Factor of Road Users
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wegman, F.; Zhang, F.; Dijkstra, A. How to make more cycling good for road safety? Accid. Anal. Prev. 2012, 44, 19–29. [Google Scholar] [CrossRef]
- Ma, C.; Yang, D.; Zhou, J.; Feng, Z.; Yuan, Q. Risk riding behaviors of urban e-bikes: A literature review. Int. J. Environ. Res. Public Health 2019, 16, 2308. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yang, Y.; Yang, J.; Hu, J.; Li, Y.; Wu, M.; Stallones, L.; Xiang, H. Road traffic injuries among riders of electric bike/electric moped in southern China. Traffic Inj. Prev. 2018, 19, 417–422. [Google Scholar] [CrossRef]
- World Health Organization; Department of Violence, Injury Prevention, World Health Organization; Violence, Injury Prevention,; World Health Organization. Global Status Report on Road Safety: Time for Action; World Health Organization: Geneva, Switzerland, 2009. [Google Scholar]
- UK Department for Transport. Local Transport Note 1/11---Shared Space; UK Department for Transport: London, UK, 2011. [Google Scholar]
- Alsaleh, R.; Hussein, M.; Sayed, T. Microscopic behavioural analysis of cyclist and pedestrian interactions in shared spaces. Can. J. Civ. Eng. 2020, 47, 50–62. [Google Scholar] [CrossRef]
- Kaparias, I.; Bell, M.G.; Dong, W.; Sastrawinata, A.; Singh, A.; Wang, X.; Mount, B. Analysis of pedestrian–vehicle traffic conflicts in street designs with elements of shared space. Transp. Res. Rec. 2013, 2393, 21–30. [Google Scholar] [CrossRef]
- Khan, S.I.; Raksuntorn, W. Characteristics of passing and meeting maneuvers on exclusive bicycle paths. Transp. Res. Rec. 2001, 1776, 220–228. [Google Scholar] [CrossRef]
- Mohammed, H.; Bigazzi, A.Y.; Sayed, T. Characterization of bicycle following and overtaking maneuvers on cycling paths. Transp. Res. Part C Emerg. Technol. 2019, 98, 139–151. [Google Scholar] [CrossRef]
- Kaparias, I.; Li, P. Behaviour and perceptions of powered two-wheeler users in street designs with elements of shared space. Transp. Res. Part F Traffic Psychol. Behav. 2021, 80, 368–380. [Google Scholar] [CrossRef]
- Beitel, D.; Stipancic, J.; Manaugh, K.; Miranda-Moreno, L. Assessing safety of shared space using cyclist-pedestrian interactions and automated video conflict analysis. Transp. Res. Part D Transp. Environ. 2018, 65, 710–724. [Google Scholar] [CrossRef]
- Alsaleh, R.; Sayed, T. Markov-game modeling of cyclist-pedestrian interactions in shared spaces: A multi-agent adversarial inverse reinforcement learning approach. Transp. Res. Part C Emerg. Technol. 2021, 128, 103191. [Google Scholar] [CrossRef]
- Lee, O.; Rasch, A.; Schwab, A.L.; Dozza, M. Modelling cyclists’ comfort zones from obstacle avoidance manoeuvres. Accid. Anal. Prev. 2020, 144, 105609. [Google Scholar] [CrossRef]
- Hussein, M.; Sayed, T. Microscopic pedestrian interaction behavior analysis using gait parameters. Transp. Res. Rec. 2015, 2519, 28–38. [Google Scholar] [CrossRef]
- Hussein, M.; Sayed, T. A bi-directional agent-based pedestrian microscopic model. Transp. A Transp. Sci. 2017, 13, 326–355. [Google Scholar] [CrossRef]
- Hediyeh, H.; Sayed, T.; Zaki, M.H.; Mori, G. Pedestrian gait analysis using automated computer vision techniques. Transp. A Transp. Sci. 2014, 10, 214–232. [Google Scholar] [CrossRef]
- Wang, C.; Xu, C.; Xia, J.; Qian, Z. The effects of safety knowledge and psychological factors on self-reported risky driving behaviors including group violations for e-bike riders in China. Transp. Res. Part F Traffic Psychol. Behav. 2018, 56, 344–353. [Google Scholar] [CrossRef]
- Yao, L.; Wu, C. Traffic safety for electric bike riders in China: Attitudes, risk perception, and aberrant riding behaviors. Transp. Res. Rec. 2012, 2314, 49–56. [Google Scholar] [CrossRef]
- Lehtonen, E.; Havia, V.; Kovanen, A.; Leminen, M.; Saure, E. Evaluating bicyclists’ risk perception using video clips: Comparison of frequent and infrequent city cyclists. Transp. Res. Part F Traffic Psychol. Behav. 2016, 41, 195–203. [Google Scholar] [CrossRef]
- Zheng, C.; Liu, Y.; Ma, G.; Deng, P.; Zhang, J. Research on relationship between risk perception and cycling crashes in electric cyclists. Adv. Mech. 2019, 11, 1687814019851639. [Google Scholar] [CrossRef]
- Che, M.; Wong, Y.D.; Lum, K.M.; Wang, X. Interaction behaviour of active mobility users in shared space. Transp. Res. Part A Policy Pract. 2021, 153, 52–65. [Google Scholar] [CrossRef]
- Gkekas, F.; Bigazzi, A.Y.; Gill, G.; Gingras, P. Perceived safety and experienced incidents between pedestrians and cyclists in a high-volume non-motorized shared space. Transp. Res. Interdiscip. Perspect. 2020, 4, 100094. [Google Scholar] [CrossRef]
- Kraay, J.H.; van der Horst, A.R.A.; Oppe, S. Manual Conflict Observation Technique DOCTOR Dutch Objective Conflict Technique for Operation and Research (Report 2013-1); van der Horst, A.R.A., Translator; Foundation Road Safety for All: Voorburg, The Netherlands, Originally published in 1986 by Stichting Wetenschappelijk Onderzoek Verkeersveiligheid SWOV and Instituut voor Zintuigfysiologie TNO; SWOV rapport R-86-3; Leidschendam, Stichting Wetenschappelijk Onderzoek Verkeersveiligheid SWOV Rapport IZF 1986 C-6; Soesterberg, Instituut voor Zintuigfysiologie TNO; 2013.
- Amundsen, F.H.E.; Hydén, C.H. Proceedings of the First Workshop on Traffic Conflicts; Institute of Transport Economics: Oslo, Norway; Lund Institute of Technology: Lund, Norway, 1977. [Google Scholar]
- Liang, X.; Meng, X.; Zheng, L. Investigating conflict behaviours and characteristics in shared space for pedestrians, conventional bicycles and e-bikes. Accid. Anal. Prev. 2021, 158, 106167. [Google Scholar] [CrossRef]
- Huertas-Leyva, P.; Dozza, M.; Baldanzini, N. Investigating cycling kinematics and braking maneuvers in the real world: E-bikes make cyclists move faster, brake harder, and experience new conflicts. Transp. Res. Part F Traffic Psychol. Behav. 2018, 54, 211–222. [Google Scholar] [CrossRef]
- Schleinitz, K.; Petzoldt, T.; Franke-Bartholdt, L.; Krems, J.; Gehlert, T. The German Naturalistic Cycling Study--Comparing cycling speed of riders of different e-bikes and conventional bicycles. Saf. Sci. 2017, 92, 290–297. [Google Scholar] [CrossRef]
- T-Analyst. Semi-Automated Video Processing. 2019. Available online: https://bitbucket.org/TrafficAndRoads/tanalyst/wiki/Manual (accessed on 20 October 2025).
- Tsai, R. A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras lenses. IEEE J. Robot. Autom. 1987, 3, 323–344. [Google Scholar] [CrossRef]
- Gavriilidou, A.; Daamen, W.; Yuan, Y.; Hoogendoorn, S.P. Modelling cyclist queue formation using a two-layer framework for operational cycling behaviour. Transp. Res. Part C Emerg. Technol. 2019, 105, 468–484. [Google Scholar] [CrossRef]
- Ma, X.; Luo, D. Modeling cyclist acceleration process for bicycle traffic simulation using naturalistic data. Transp. Res. Part F Traffic Psychol. Behav. 2016, 40, 130–144. [Google Scholar] [CrossRef]
- Petzoldt, T.; Schleinitz, K.; Heilmann, S.; Gehlert, T. Traffic conflicts and their contextual factors when riding conventional vs. electric bicycles. Transp. Res. Part F Traffic Psychol. Behav. 2017, 46, 477–490. [Google Scholar] [CrossRef]
- Wang, W.L.; Lo, S.M.; Liu, S.B.; Kuang, H. Microscopic modeling of pedestrian movement behavior: Interacting with visual attractors in the environment. Transp. Res. Part C Emerg. Technol. 2014, 44, 21–33. [Google Scholar] [CrossRef]
- Teknomo, K. Application of microscopic pedestrian simulation model. Transp. Res. Part F Traffic Psychol. Behav. 2006, 9, 15–27. [Google Scholar] [CrossRef]
- Alsaleh, R.; Sayed, T.; Zaki, M.H. Microscopic behavioural analysis of cyclists-pedestrian conflicts in shared spaces using explainable AI. Accid. Anal. Prev. 2019, 132, 105282. [Google Scholar]
- Dias, C.; Iryo-Asano, M.; Nishiuchi, H.; Todoroki, T. Calibrating a social force based model for simulating personal mobility vehicles and pedestrian mixed traffic. Simul. Model. Pract. Theory 2018, 87, 395–411. [Google Scholar] [CrossRef]
- Anvari, B.; Bell, M.G.; Sivakumar, A.; Ochieng, W.Y. Modelling shared space users via rule-based social force model. Transp. Res. Part C Emerg. Technol. 2015, 51, 83–103. [Google Scholar] [CrossRef]
- Luo, Y.; Jia, B.; Liu, J.; Lam, W.H.K.; Li, X.; Gao, Z. Modeling the interactions between car and bicycle in heterogeneous traffic. J. Adv. Transp. 2015, 49, 29–47. [Google Scholar] [CrossRef]
- Gorrini, A.; Crociani, L.; Vizzari, G.; Bandini, S. Observation results on pedestrian-vehicle interactions at non-signalized intersections towards simulation. Transp. Res. Part F Traffic Psychol. Behav. 2018, 59, 269–285. [Google Scholar] [CrossRef]
- Feng, F.; Bao, S.; Hampshire, R.C.; Delp, M. Drivers overtaking bicyclists—An examination using naturalistic driving data. Accid. Anal. Prev. 2018, 115, 98–109. [Google Scholar] [CrossRef] [PubMed]
- Dozza, M.; Schindler, R.; Bianchi-Piccinini, G.; Karlsson, J. How do drivers overtake cyclists? Accid. Anal. Prev. 2016, 88, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Rasch, A.; Panero, G.; Boda, C.N.; Dozza, M. How do drivers overtake pedestrians? Evidence from field test and naturalistic driving data. Accid. Anal. Prev. 2020, 139, 105494. [Google Scholar] [CrossRef] [PubMed]
- Alsaleh, R.; Walia, K.; Moshiri, G.; Alsaleh, Y.T. Traffic Collision Severity Modeling Using Multi-Level Multinomial Logistic Regression Model. Appl. Sci. 2025, 15, 838. [Google Scholar] [CrossRef]
- Lignoski, B. Bicycle Stability, Is the Steering Angle Proportional to the Lean? Physics Department, The College of Wooster: Wooster, OH, USA, 2002; p. 4691. [Google Scholar]
- Rubie, E.; Haworth, N.; Twisk, D.; Yamamoto, N. Influences on lateral passing distance when motor vehicles overtake bicycles: A systematic literature review. Transp. Rev. 2020, 40, 754–773. [Google Scholar] [CrossRef]
- Feng, Z.; Raghuwanshi, R.P.; Xu, Z.; Huang, D.; Zhang, C.; Jin, T. Electric-bicycle-related injury: A rising traffic injury burden in China. Inj. Prev. 2010, 16, 417–419. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Xu, C.; Xia, J.; Qian, Z. Modeling faults among e-bike-related fatal crashes in China. Traffic Inj. Prev. 2017, 18, 175–181. [Google Scholar] [CrossRef] [PubMed]











| Severity Class | Definition |
|---|---|
| 0 | Positively evasive action with no collision probability |
| 1 | Precautionary evasive action with a low collision probability |
| 2 | Controlled evasive action to avoid a collision with ample maneuvering time and space |
| 3 | Strong evasive action to avoid a collision with relatively ample maneuvering time and space |
| 4 | Emergency evasive action or uncontrolled evasive action just to avoid collision with little maneuvering time and space |
| 5 | Emergency evasive action resulting in a near-crash or slight collision |
| Variable | Category |
|---|---|
| Road users | |
| Type | Pedestrian, Conventional bicycles, E-bikes |
| Gender | Male, Female |
| Whether carry large items | Yes, No |
| Conflict indicators | |
| TTC | 0–0.5, 0.5–1, 1–1.5, 1.5–2, >2 s |
| PET | 0–0.5, 0.5–1, >1 s |
| Type of interaction | |
| Severity level | Class 0–5 |
| Evasive actions | |
| Reaction situation | Reaction, No reaction |
| Control situation | Controlled, Uncontrolled (The behavior is controlled or not is based on whether there are actions, such as swaying, keeping balance assisted by foot) |
| Evasive Action | Type | Feature Points of vx | Corresponding Situation of Start/End Point |
|---|---|---|---|
| Swerving Maneuver | Type 1 | 0 values which are across positive and negative | Road user changes direction to the left or right in the lateral direction |
| Type 2 | The inflection point from a horizontal line (vx < 0.1 m/s) to a curve or an oblique line | Road user changes from moving straight forward to swerving | |
| Acceleration Maneuver (ax) | Type 3 | Peak value/valley value | Road user switches between acceleration and deceleration in the lateral direction |
| Type 4 | The inflection point from a horizontal line (vx > 0.1 m/s) to a curve or an oblique line | Road user changes from constant speed to variable speed in the lateral direction | |
| Type 5 | The inflection point where the change to a different slope line occurs | The value of ax changes significantly. However, the acceleration and deceleration states did not change |
| Start Point Type | Type 1 | Type 2 | Type 3 | Type 4 | Type 5 |
|---|---|---|---|---|---|
| Total | 213 | 60 | 65 | 24 | 8 |
| Severity level * | |||||
| I | 86 | 22 | 34 | 6 | 2 |
| II | 96 | 32 | 18 | 10 | 3 |
| III | 31 | 6 | 13 | 8 | 3 |
| Road user type | |||||
| C | 60 | 7 | 16 | 5 | 1 |
| E | 132 | 32 | 39 | 9 | 4 |
| P | 21 | 21 | 10 | 10 | 3 |
| Total Mean [SD] | Severity Level Mean [SD] | Road User Type Mean [SD] | Gender Mean [SD] | ||||||
|---|---|---|---|---|---|---|---|---|---|
| I | II | III | C | E | P | Male | Female | ||
| (m) | 0.45 [0.34] | — | — | — | 0.48 [0.39] | 0.47 [0.34] | 0.39 [0.28] | 0.45 [0.34] | 0.46 [0.36] |
| (m) | 14.14 [8.38] | — | — | — | 14.76 [9.31] | 15.12 [8.30] | 10.28 [5.85] | 14.12 [8.40] | 14.32 [8.32] |
| (m) | 0.55 [0.38] | — | — | — | 0.59 [0.38] | 0.58 [0.38] | 0.36 [0.26] | 0.56 [0.36] | 0.50 [0.39] |
| (m) | 7.71 [4.55] | — | — | — | 7.44 [4.25] | 9.26 [4.17] | 2.92 [2.31] | 7.81 [4.60] | 7.49 [4.40] |
| Swerve-away time (s) | 2.07 [0.91] | 2.04 [0.87] | 2.12 [0.95] | 2.04 [0.90] | 2.10 [0.94] | 2.03 [0.85] | 2.20 [1.03] | 2.00 [0.89] | 2.24 * [0.93] |
| Total Mean [SD] | Severity Level Mean [SD] | Road User Type Mean [SD] | Gender Mean [SD] | ||||||
|---|---|---|---|---|---|---|---|---|---|
| I | II | III | C | E | P | Male | Female | ||
| 0.47 [0.17] | 0.48 [0.17] | 0.46 [0.16] | 0.50 [0.20] | 0.46 [0.16] | 0.47 [0.17] | 0.51 [0.20] | 0.48 [0.17] | 0.46 [0.16] | |
| 0.48 [0.18] | 0.48 [0.16] | 0.48 [0.17] | 0.51 [0.22] | 0.45 [0.16] | 0.49 [0.17] | 0.48 [0.20] | 0.48 [0.16] | 0.48 [0.17] | |
| Total Mean [SD] | Severity Level Mean [SD] | Road User Type Mean [SD] | Gender Mean [SD] | Large Items Mean [SD] | |||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| I | II | III | C | E | P | Male | Female | Yes | No | ||
| 1.12 [0.34] | 1.19 [0.30] | 1.14 [0.31] | 0.89 [0.39] | 1.13 [0.31] | 1.16 [0.34] | 0.99 [0.31] | 1.14 [0.34] | 1.09 [0.31] | 1.26 [0.33] | 1.11 [0.33] | |
| 3.55 [3.58] | 3.72 [3.70] | 3.67 [3.57] | 2.80 [3.22] | 2.88 [2.89] | 4.21 [4.00] | 2.31 [2.10] | 3.52 [3.44] | 3.63 [3.83] | 3.58 [3.53] | 3.48 [3.55] | |
| Total Mean [SD] | Severity Level Mean [SD] | Road User Type Mean [SD] | Gender Mean [SD] | ||||||
|---|---|---|---|---|---|---|---|---|---|
| I | II | III | C | E | P | I | II | ||
| 0.38 [0.15] | 0.38 [0.17] | 0.38 [0.16] | 0.40 [0.11] | 0.41 [0.15] | 0.39 [0.16] | 0.34 [0.12] | 0.38 [0.16] | 0.41 [0.15] | |
| 0.42 [0.16] | 0.44 [0.16] | 0.40 [0.17] | 0.43 [0.14] | 0.45 [0.17] | 0.42 [0.16] | 0.38 [0.15] | 0.41 [0.16] | 0.45 [0.16] | |
| Number of Different Start Point Types | Type 1 | Type 2 | Type 3 | Type 4 | Type 5 |
|---|---|---|---|---|---|
| Total | 167 | 87 | 46 | 27 | 4 |
| Severity level | |||||
| I | 58 | 44 | 17 | 9 | 0 |
| II | 86 | 30 | 17 | 14 | 2 |
| III | 23 | 13 | 12 | 4 | 2 |
| Road user type | |||||
| C | 49 | 15 | 10 | 5 | 2 |
| E | 108 | 51 | 19 | 10 | 1 |
| P | 10 | 21 | 17 | 12 | 1 |
| Total Mean [SD] | Severity Level Mean [SD] | Road User Type Mean [SD] | Gender Mean [SD] | ||||||
|---|---|---|---|---|---|---|---|---|---|
| I | II | III | C | E | P | Male | Female | ||
| (m) | 0.62 [1.42] | — | — | — | 0.61 [0.53] | 0.72 [1.80] | 0.30 [0.33] | 0.59 [1.28] | 0.68 [1.69] |
| (m) | 7.43 [5.81] | — | — | — | 7.24 [4.89] | 8.97 [6.09] | 2.68 [2.22] | 7.61 [5.98] | 7.08 [5.44] |
| Swerve-back time (s) | 1.70 [0.88] | 1.63 [0.79] | 1.79 [0.95] | 1.65 [0.87] | 1.77 [0.82] | 1.65 [0.89] | 1.79 [0.90] | 1.65 [0.83] | 1.82 [0.97] |
| Whole process time (s) | 3.75 [1.40] | 3.65 [1.26] | 3.88 [1.55] | 3.64 [1.28] | 3.87 [1.46] | 3.63 [1.32] | 3.94 [1.52] | 3.62 [1.33] | 4.04 [1.52] |
| Type of Road Users | Before Interaction | During Interaction |
|---|---|---|
| Average speed of e-bikes (m/s) | 4.98 [2.47] | 4.73 [2.27] |
| Average speed of conventional bicycles (m/s) | 3.51 [0.79] | 3.41 [0.78] |
| Average speed of pedestrians (m/s) | 1.29 [0.06] | 1.23 [0.05] |
| Total Mean [SD] | Severity Level Mean [SD] | Road User Type Mean [SD] | |||||
|---|---|---|---|---|---|---|---|
| I | II | III | C | E | P | ||
| Safety zone | 4.83 [5.19] | 4.75 [5.38] | 5.15 [4.98] | 4.20 [5.28] | 5.34 [5.65] | 5.55 [5.33] | 1.76 [1.86] |
| Start Point Type | Type 1 | Type 2 | Type 3 | Type 4 | Type 5 |
|---|---|---|---|---|---|
| Total | 59 | 39 | 25 | 4 | 1 |
| Severity level | |||||
| I | 11 | 13 | 8 | 0 | 0 |
| II | 32 | 22 | 11 | 4 | 1 |
| III | 16 | 4 | 6 | 0 | 0 |
| Road user type | |||||
| C | 19 | 8 | 8 | 1 | 1 |
| E | 40 | 30 | 17 | 3 | 0 |
| P | 0 | 1 | 0 | 0 | 0 |
| Total Mean [SD] | Severity Level Mean [SD] | Road User Type Mean [SD] | Gender Mean [SD] | |||||
|---|---|---|---|---|---|---|---|---|
| I | II | III | C | E | Male | Female | ||
| (m) | 0.35 [0.26] | — | — | — | 0.33 [0.28] | 0.35 [0.25] | 0.34 [0.26] | 0.36 [0.26] |
| (m) | 7.02 [4.40] | — | — | — | 5.95 [3.12] | 7.43 [4.80] | 6.69 [4.36] | 8.38 [4.41] |
| (m) | 0.87 [0.43] | — | — | — | 0.85 [0.39] | 0.83 [0.38] | 0.90 [0.43] | 0.73 [0.36] |
| (m) | 10.18 [4.92] | — | — | — | 9.06 [3.61] | 13.29 [4.71] | 10.01 [4.83] | 10.86 [5.28] |
| Swerve-away time (s) | 2.54 [0.98] | 2.92 [1.11] | 2.31 [0.80] | 2.55 [1.11] | 2.60 [0.91] | 2.52 [1.01] | 2.51 [0.96] | 2.64 [1.06] |
| Total Mean [SD] | Severity Level Mean [SD] | Road User Type Mean [SD] | Gender Mean [SD] | |||||
|---|---|---|---|---|---|---|---|---|
| I | II | III | C | E | Male | Female | ||
| 0.52 [0.25] | 0.51 [0.25] | 0.54 [0.13] | 0.42 [0.15] | 0.47 [0.21] | 0.53 [0.15] | 0.52 [0.15] | 0.54 [0.23] | |
| 0.53 [0.18] | 0.48 [0.17] | 0.55 [0.18] | 0.46 [0.15] | 0.54 [0.23] | 0.53 [0.18] | 0.52 [0.18] | 0.54 [0.21] | |
| Total Mean [SD] | Severity Level Mean [SD] | Road User Type Mean [SD] | Gender Mean [SD] | |||||
|---|---|---|---|---|---|---|---|---|
| I | II | III | C | E | Male | Female | ||
| (m) | 1.13 [0.25] | 1.20 [0.23] | 1.13 [0.21] | 1.10 [0.24] | 1.08 [0.22] | 1.15 [0.25] | 1.13 [0.25] | 1.12 [0.22] |
| (m) | 1.25 [1.67] | 1.24 [1.09] | 1.29 [1.90] | 1.20 [1.67] | 1.45 [2.64] | 1.16 [1.06] | 1.28 [1.80] | 1.12 [0.93] |
| Total Mean [SD] | Severity Level Mean [SD] | Road User Type Mean [SD] | Gender Mean [SD] | |||||
|---|---|---|---|---|---|---|---|---|
| I | II | III | C | E | Male | Female | ||
| 0.43 [0.18] | 0.52 0.20 | 0.43 0.18 | 0.36 0.10 | 0.43 [0.24] | 0.44 [0.16] | 0.43 [0.16] | 0.47 [0.24] | |
| 0.44 [0.16] | 0.51 [0.15] | 0.43 [0.17] | 0.38 [0.14] | 0.40 [0.16] | 0.45 [0.17] | 0.43 [0.15] | 0.47 [0.21] | |
| Number of Different Start Point Types | Type 1 | Type 2 | Type 3 | Type 4 | Type 5 |
|---|---|---|---|---|---|
| Total | |||||
| 53 | 28 | 14 | 5 | 0 | |
| Severity level | |||||
| Normal interaction | 13 | 5 | 1 | 1 | 0 |
| Ordinary conflicts | 31 | 18 | 9 | 1 | 0 |
| Serious conflicts | 9 | 5 | 4 | 3 | 0 |
| Road user type | |||||
| C | 15 | 3 | 6 | 3 | 0 |
| E | 38 | 25 | 8 | 2 | 0 |
| Total Mean [SD] | Severity Level Mean [SD] | Road User Type Mean [SD] | Gender Mean [SD] | |||||
|---|---|---|---|---|---|---|---|---|
| I | II | III | C | E | Male | Female | ||
| (m) | 0.86 [0.53] | — | — | — | 0.76 [0.53] | 0.90 [0.53] | 0.85 [0.55] | 0.89 [0.45] |
| (m) | 9.15 [4.86] | — | — | — | 8.25 [4.43] | 9.60 [5.00] | 8.92 [4.93] | 10.12 [4.52] |
| (m) | 2.07 [0.82] | 2.06 [0.65] | 2.14 [0.82] | 1.91 [0.94] | 2.08 [0.98] | 2.07 [0.76] | 2.01 [0.78] | 2.31 [1.05] |
| Swerve-back time (s) | 4.58 [1.30] | 5.07 [1.47] | 4.48 [1.06] | 4.40 [1.64] | 4.66 [1.33] | 4.55 [1.30] | 4.50 [1.34] | 4.77 [1.17] |
| Type of Road Users | Before Interaction | During Interaction |
|---|---|---|
| Average speed of e-bikes (m/s) | 4.48 [1.49] | 4.29 [1.37] |
| Average speed of conventional bicycles (m/s) | 3.45 [0.86] | 3.68 [0.93] |
| Average speed of e-bikes (m/s) | 4.48 [1.49] | 4.29 [1.37] |
| Total Mean [SD] | Severity Level Mean [SD] | Road User Type Mean [SD] | Gender Mean [SD] | |||||
|---|---|---|---|---|---|---|---|---|
| I | II | III | C | E | Male | Female | ||
| Safety zone (m2) | 9.36 [6.26] | 10.31 5.95 | 9.32 6.42 | 8.56 6.24 | 8.53 5.28 | 9.78 6.62 | 9.82 [6.54] | 7.75 [4.60] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, X.; Alsaleh, R.; Sayed, T.; Moshiri, G.; Haider, A. Microscopic Behavioral and Psychological Analysis of Road User Interactions in Shared Spaces. Appl. Sci. 2025, 15, 11418. https://doi.org/10.3390/app152111418
Liang X, Alsaleh R, Sayed T, Moshiri G, Haider A. Microscopic Behavioral and Psychological Analysis of Road User Interactions in Shared Spaces. Applied Sciences. 2025; 15(21):11418. https://doi.org/10.3390/app152111418
Chicago/Turabian StyleLiang, Xinyu, Rushdi Alsaleh, Tarek Sayed, Ghoncheh Moshiri, and Abdulaziz Haider. 2025. "Microscopic Behavioral and Psychological Analysis of Road User Interactions in Shared Spaces" Applied Sciences 15, no. 21: 11418. https://doi.org/10.3390/app152111418
APA StyleLiang, X., Alsaleh, R., Sayed, T., Moshiri, G., & Haider, A. (2025). Microscopic Behavioral and Psychological Analysis of Road User Interactions in Shared Spaces. Applied Sciences, 15(21), 11418. https://doi.org/10.3390/app152111418

