Single Image-Based Reflection Removal via Dual-Stream Multi-Column Reversible Encoding
Abstract
1. Introduction
- We adapt the reversible NAFNet encoder—originally proposed for image restoration [12]—to the reflection removal setting. The invertible residual design aims to preserve feature information during encoding and can support memory-efficient training via activation recomputation.
- We adopt a dual-stream decoder without heavy attention or gating modules. Shared encoder features are propagated via skip connections to two parallel branches corresponding to transmission and reflection, providing simple cross-stream interaction while keeping the decoder compact.
2. Related Work
2.1. Traditional (Non-Learning-Based) Reflection Removal
2.2. Multi-Image Reflection Removal
2.3. Single-Image Reflection Removal with Deep Learning
3. Methodology
3.1. Overall Architecture
3.2. Reversible NAFBlock
- 1
- convolution to project the features (reduce or expand the number of channels to match the target dimension).
- 2
- A stack of NAFBlocks for feature transformation.
- 3
- An upsampling module, implemented via bilinear interpolation or sub-pixel convolution to increase the spatial resolution.
- 4
- A final convolution layer to generate either or .
3.3. Dual-Stream Fusion Layer
3.4. Loss Function Design
4. Experimental Results
4.1. Implementation Details
4.2. Qualitative Evaluation
4.3. Quantitative Evaluation
4.4. Ablation Study
Configuration | Params (M) | GFLOPs | Latency | Throughput | PSNR | SSIM |
---|---|---|---|---|---|---|
Single-Stream + Plain | 15.19 | 208.14 | 10.39 | 385.13 | 22.90 | 0.796 |
Dual-Stream + Plain | 16.24 | 259.68 | 28.61 | 139.81 | 23.59 | 0.860 |
Single-Stream + Rev. | 42.33 | 594.69 | 44.45 | 89.99 | 23.63 | 0.863 |
Dual-Stream + Rev. | 43.38 | 1009.72 | 69.09 | 57.89 | 24.69 | 0.888 |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Truong, T.H.; Lee, T.H.; Munasinghe, V.; Kim, T.S.; Kim, J.S.; Lee, H.J. Inpainting GAN-based image blending with adaptive binary line mask. J. Multimed. Inf. Syst. 2023, 10, 227–236. [Google Scholar] [CrossRef]
- Wu, Z.; Leng, L. Anti-Occlusion Diagnosis of Skin Cancer Based on Heterogeneous Data. J. Multimed. Inf. Syst. 2025, 12, 51–58. [Google Scholar] [CrossRef]
- Kim, H.-J.; Lee, D.-S.; Kwon, S.-K. Image Reconstruction Method by Spatial Feature Prediction Using CNN and Attention. J. Multimed. Inf. Syst. 2024, 11, 1–8. [Google Scholar] [CrossRef]
- Levin, A.; Weiss, Y. User assisted separation of reflections from a single image using a sparsity prior. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 29, 1647–1654. [Google Scholar] [CrossRef] [PubMed]
- Wan, R.; Shi, B.; Duan, L.Y.; Tan, A.H.; Kot, A.C. CRRN: Multi-scale guided concurrent reflection removal network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018. [Google Scholar]
- Yang, J.; Gong, D.; Liu, L.; Shi, Q. Seeing deeply and bidirectionally: A deep learning approach for single image reflection removal. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 654–669. [Google Scholar]
- Wen, Q.; Tan, Y.; Qin, J.; Liu, W.; Han, G.; He, S. Single Image Reflection Removal Beyond Linearity. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20 June 2019; pp. 3771–3779. [Google Scholar]
- Hu, Q.; Guo, X. Single Image Reflection Separation via Component Synergy. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Paris, France, 2–6 October 2023; pp. 13138–13147. [Google Scholar]
- Zhang, X.; Ng, R.; Chen, Q. Single image reflection separation with perceptual losses. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018; pp. 4786–4794. [Google Scholar]
- Wei, K.; Yang, J.; Fu, Y.; Wipf, D.; Huang, H. Single image reflection removal exploiting misaligned training data and network enhancements. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 8178–8187. [Google Scholar]
- Zhao, H.; Li, M.; Hu, Q.; Guo, X. Reversible decoupling network for single image reflection removal. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 11–15 June 2025. [Google Scholar]
- Chen, L.; Chu, X.; Zhang, X.; Sun, J. Simple baselines for image restoration. In Proceedings of the European Conference on Computer Vision (ECCV), Tel Aviv, Israel, 23–27 October 2022; Springer: Berlin/Heidelberg, Germany, 2022; pp. 17–33. [Google Scholar]
- Li, Y.; Brown, M.S. Single image layer separation using relative smoothness. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 23–28 June 2014; pp. 2752–2759. [Google Scholar]
- Schechner, Y.Y.; Shamir, J.; Kiryati, N. Polarization-based decorrelation of transparent layers: The inclination angle of an invisible surface. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Corfu, Greece, 20–27 September 1999; pp. 814–819. [Google Scholar]
- Wan, R.; Pan, B.; Xia, L.; Yang, M.H.; Kang, S.B.; Lu, J. Depth of field guided reflection removal. In Proceedings of the European Conference on Computer Vision (ECCV), Phoenix, AZ, USA, 25–28 September 2016; pp. 792–808. [Google Scholar]
- Shih, Y.; Sunkavalli, K.; Paris, S.; Durand, F.; Freeman, W.T. Reflection removal using ghosting cues. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 3193–3201. [Google Scholar]
- Han, X.; Sim, T. Reflection removal using low-rank matrix completion. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 537–545. [Google Scholar]
- Sirinukulwattana, K.; Choe, G.; Kweon, I.S. Reflection removal using disparity and gradient-sparsity via smoothing algorithm. In Proceedings of the IEEE International Conference on Image Processing (ICIP), Quebec City, QC, Canada, 27–30 September 2015. [Google Scholar]
- Xue, T.; Rubinstein, M.; Liu, C.; Freeman, W.T. A computational approach for obstruction-free photography. Acm Trans. Graph. 2015, 34, 79:1–79:11. [Google Scholar] [CrossRef]
- Jin, M.; Susstrunk, S.; Favaro, P. Learning to see through reflections. In Proceedings of the IEEE International Conference on Computational Photography (ICCP), Pittsburgh, PA, USA, 4–9 May 2018; pp. 1–12. [Google Scholar]
- Fan, Q.; Yang, J.; Hua, G. A generic deep architecture for single image reflection removal and image smoothing. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 3248–3257. [Google Scholar]
- Li, C.; Yang, Y.; He, K.; Lin, S.; Hopcroft, J.E. Single image reflection removal through cascaded refinement. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 14–19 June 2020; pp. 3562–3571. [Google Scholar]
- Hong, Y.; Zhong, H.; Weng, S.; Liang, J.; Shi, B. L-DiffER: Single Image Reflection Removal with Language-based Diffusion Model. In Proceedings of the European Conference on Computer Vision (ECCV), Milan, Italy, 29 September–4 October 2024; Springer: Berlin/Heidelberg, Germany, 2024; pp. 58–76. [Google Scholar] [CrossRef]
- Behrmann, J.; Grathwohl, W.; Chen, R.T.Q.; Duvenaud, D.; Jacobsen, J.H. Invertible residual networks. In Proceedings of the 36th International Conference on Machine Learning (ICML), Long Beach, CA, USA, 9–15 June 2019; pp. 573–582. [Google Scholar]
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. Pytorch: An imperative style, high-performance deep learning library. In Proceedings of the 33rd International Conference on Neural Information Processing Systems (NIPS’19), Vancouver, BC, Canada, 8–14 December 2019. [Google Scholar]
- Kinga, D.; Adam, J.B. A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar] [CrossRef]
- Hu, Q.; Guo, X. Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation. Adv. Neural Inf. Process. Syst. 2021, 34, 24683–24694. [Google Scholar]
- Li, Y.; Liu, M.; Yi, Y.; Li, Q.; Ren, D.; Zuo, W. Two-stage single image reflection removal with reflection-aware guidance. Appl. Intell. 2023, 53, 19433–19448. [Google Scholar] [CrossRef]
- Everingham, M.; Van Gool, L.; Williams, C.K.; Winn, J.; Zisserman, A. The pascal visual object classes (voc) challenge. Int. J. Comput. Vis. 2010, 88, 303–338. [Google Scholar] [CrossRef]
- Dong, Z.; Xu, K.; Yang, Y.; Bao, H.; Xu, W.; Lau, R.W. Location-aware single image reflection removal. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 5017–5026. [Google Scholar]
Method | Real20 | Objects | Postcard | Average | ||||
---|---|---|---|---|---|---|---|---|
PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | |
Zhang et al. [9] | 16.81 | 0.797 | 22.55 | 0.788 | 22.68 | 0.856 | 20.68 | 0.814 |
ERRNet [10] | 22.89 | 0.803 | 24.87 | 0.896 | 22.04 | 0.876 | 23.27 | 0.858 |
IBCLN [22] | 21.86 | 0.762 | 24.87 | 0.893 | 23.39 | 0.875 | 23.37 | 0.843 |
RAGNet [28] | 22.95 | 0.793 | 26.15 | 0.903 | 23.67 | 0.879 | 24.26 | 0.858 |
YTMT [27] | 23.26 | 0.806 | 24.87 | 0.896 | 22.91 | 0.884 | 23.68 | 0.862 |
DSRNet [8] | 24.23 | 0.820 | 26.28 | 0.914 | 24.56 | 0.908 | 25.02 | 0.881 |
RDNet [11] | 24.43 | 0.835 | 25.76 | 0.905 | 25.95 | 0.920 | 25.38 | 0.887 |
Ours | 23.24 | 0.848 | 25.88 | 0.913 | 24.96 | 0.902 | 24.69 | 0.888 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.; Lee, D. Single Image-Based Reflection Removal via Dual-Stream Multi-Column Reversible Encoding. Appl. Sci. 2025, 15, 11229. https://doi.org/10.3390/app152011229
Park J, Lee D. Single Image-Based Reflection Removal via Dual-Stream Multi-Column Reversible Encoding. Applied Sciences. 2025; 15(20):11229. https://doi.org/10.3390/app152011229
Chicago/Turabian StylePark, Jimin, and Deokwoo Lee. 2025. "Single Image-Based Reflection Removal via Dual-Stream Multi-Column Reversible Encoding" Applied Sciences 15, no. 20: 11229. https://doi.org/10.3390/app152011229
APA StylePark, J., & Lee, D. (2025). Single Image-Based Reflection Removal via Dual-Stream Multi-Column Reversible Encoding. Applied Sciences, 15(20), 11229. https://doi.org/10.3390/app152011229