Comparison of Radiotherapy Techniques for Left-Sided Early-Stage Breast Cancer Radiotherapy: A Systematic Literature Review on Planning Dose Analysis
Abstract
Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. The Inclusion and Exclusion Criteria
2.3. Review Process and Quality Assessment
2.4. Data Extraction
3. Results
3.1. Study Selection
3.2. Study Characteristics
- (1)
- Open-Fields (OF): a technique that contains only two parallel opposing tangential fields shaped by MLC, with or without wedges;
- (2)
- FiF: two parallel opposing tangential beams with subfields planned using forward planning;
- (3)
- IMRT: inverse planning technique with fields with modulated intensity with a fixed number of fields;
- (4)
- Hybrid-IMRT: a large percentage of dose prescribed with two parallel opposing tangential fields or FiF plus a small percentage with IMRT;
- (5)
- VMAT: inverse planning technique using partial or tangential arcs with modulated beam intensity;
- (6)
- Hybrid-VMAT: a large percentage of dose prescribed with two parallel opposing tangential fields or FiF plus a small percentage with VMAT using partial or tangential arcs;
3.3. Dosimetric Data
4. Discussion
4.1. Standard Techniques (OF, FiF, IMRT and VMAT)
4.2. Hybrid Techniques
4.3. Broader Considerations
- (1)
- (2)
- Delineation of target volume and OARs: in several of the selected articles, the delineation protocols were not described, which can make comparisons between them difficult. Different delineation guidelines result in different outcomes in dose evaluation. The use of international protocols is very important, as numerous studies demonstrate better results when used [38,39,40];
- (3)
- Treatment Planning System and calculation algorithms: the execution of dosimetric plans with different Treatment Planning Systems, as well as the use of different calculation algorithms, may produce different results in a dosimetric plan. Allied to this, in advanced techniques such as IMRT and VMAT, inverse planning is performed in different ways. All of this may bring different results, not only in terms of dosimetry but also in terms of clinical results for the patient [41,42,43,44];
- (4)
- (5)
- (6)
4.4. Limitations of the Study
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
3D-CRT | Three-Dimensional Conformal Radiation Therapy |
CI | Conformity Index |
CTV | Clinical Target Volume |
D95% | Percentage of the prescribed dose that covered 95% of the target volume |
DIBH | Deep-Inspiration Breath Hold |
EBCTCG | Early Breast Cancer Trialists’ Collaborative Group |
FiF | Field-in-Field |
HI | Homogeneity Index |
IMRT | Intensity-Modulated Radiation Therapy |
JBI | Joanna Briggs Institute |
MLC | Multiple Leaf Collimator |
OARs | Organs-At-Risk |
OF | Open-Fields |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
PTV | Planning Target Volume |
RT | Radiotherapy |
TPS | Treatment Planning System |
VMAT | Volumetric Modulated Arc Therapy |
Vx | Percentage of organ receiving ≥ x (Gy or % of the prescribed dose) |
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Early Breast Cancer Trialists’ Collaborative Group; Darby, S.; McGale, P.; Correa, S.; Taylor, C.; Arriagada, R.; Clarke, M.; Cutter, D.; Davies, C.; Ewertz, M.; et al. Effect of Radiotherapy after Breast-Conserving Surgery on 10-Year Recurrence and 15-Year Breast Cancer Death: Meta-Analysis of Individual Patient Data for 10,801 Women in 17 Randomised Trials. Lancet 2011, 378, 1707–1716. [Google Scholar] [CrossRef]
- Early Breast Cancer Trialists’ Collaborative Group (EBCTCG). Favourable and Unfavourable Effects on Long-Term Survival of Radiotherapy for Early Breast Cancer: An Overview of the Randomised Trials. Lancet 2000, 355, 1757–1770. [Google Scholar] [CrossRef]
- Haciislamoglu, E.; Colak, F.; Canyilmaz, E.; Dirican, B.; Gurdalli, S.; Yilmaz, A.H.; Yoney, A.; Bahat, Z. Dosimetric Comparison of Left-Sided Whole-Breast Irradiation with 3DCRT, Forward-Planned IMRT, Inverse-Planned IMRT, Helical Tomotherapy, and Volumetric Arc Therapy. Phys. Med. 2015, 31, 360–367. [Google Scholar] [CrossRef]
- Jin, G.H.; Chen, L.X.; Deng, X.W.; Liu, X.W.; Huang, Y.; Huang, X.B. A Comparative Dosimetric Study for Treating Left-Sided Breast Cancer for Small Breast Size Using Five Different Radiotherapy Techniques: Conventional Tangential Field, Filed-in-Filed, Tangential-IMRT, Multi-Beam IMRT and VMAT. Radiat. Oncol. 2013, 8, 89. [Google Scholar] [CrossRef]
- Xie, Y.; Bourgeois, D.; Guo, B.; Zhang, R. Comparison of Conventional and Advanced Radiotherapy Techniques for Left-Sided Breast Cancer after Breast Conserving Surgery. Med. Dosim. 2020, 45, e9–e16. [Google Scholar] [CrossRef]
- Mo, J.C.; Huang, J.; Gu, W.D.; Gao, M.; Ning, Z.H.; Mu, J.M.; Li, Q.L.; Pei, H.L. A Dosimetric Comparison of Double-Arc Volumetric Arc Therapy, Step-Shoot Intensity Modulated Radiotherapy and 3D-CRT for Left-Sided Breast Cancer Radiotherapy after Breast-Conserving Surgery. Technol. Health Care 2017, 25, 851–858. [Google Scholar] [CrossRef]
- Kamperis, E.; Kodona, C.; Hatziioannou, K.; Giannouzakos, V. Complexity in Radiation Therapy: It’s Complicated. Int. J. Radiat. Oncol. Biol. Phys. 2020, 106, 182–184. [Google Scholar] [CrossRef] [PubMed]
- Otto, K. Volumetric Modulated Arc Therapy: IMRT in a Single Gantry Arc. Med. Phys. 2008, 35, 310–317. [Google Scholar] [CrossRef] [PubMed]
- Nithya, L.; Goel, V.; Sharma, D.; Vittal, K.; Marjara, N. Dosimetric Comparison of Different Planning Techniques in Left-Sided Whole-Breast Irradiation: A Planning Study. J. Med. Phys. 2020, 45, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.-J.; Chang, Z.; Horton, J.K.; Wu, Q.-R.J.; Yoo, S.; Yin, F.-F. Dosimetric Comparison of 3D Conformal, IMRT, and V-MAT Techniques for Accelerated Partial-Breast Irradiation (APBI). Med. Dosim. 2014, 39, 152–158. [Google Scholar] [CrossRef]
- Ramasubramanian, V.; Balaji, K.; Balaji Subramanian, S.; Sathiya, K.; Thirunavukarasu, M.; Radha, C.A. Hybrid Volumetric Modulated Arc Therapy for Whole Breast Irradiation: A Dosimetric Comparison of Different Arc Designs. Radiol. Med. 2019, 124, 546–554. [Google Scholar] [CrossRef]
- Liu, H.; Chen, X.; He, Z.; Li, J. Evaluation of 3D-CRT, IMRT and VMAT Radiotherapy Plans for Left Breast Cancer Based on Clinical Dosimetric Study. Comput. Med. Imaging Graph. 2016, 54, 1–5. [Google Scholar] [CrossRef]
- Chi, F.; Wu, S.; Zhou, J.; Li, F.; Sun, J.; Lin, Q.; Lin, H.; Guan, X.; He, Z. Dosimetric Comparison of Moderate Deep Inspiration Breath-Hold and Free-Breathing Intensity-Modulated Radiotherapy for Left-Sided Breast Cancer. Cancer Radiother. 2015, 19, 180–186. [Google Scholar] [CrossRef]
- Jarvis, L.A.; Loo, B.W.; Thorndyke, B.R.; Horst, K.C. Left Anterior Descending Coronary Artery Motion in Deep Inspiration Breath-Hold and Free Breathing Using 4D-CT Scanning: Potential Impact on Left-Sided Breast Cancer Radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2005, 63, S491. [Google Scholar] [CrossRef]
- Mouawad, M.; Lailey, O.; Poulsen, P.; O’Neil, M.; Brackstone, M.; Lock, M.; Yaremko, B.; Shmuilovich, O.; Kornecki, A.; Ben Nachum, I.; et al. Intrafraction Motion Monitoring to Determine PTV Margins in Early Stage Breast Cancer Patients Receiving Neoadjuvant Partial Breast SABR. Radiother. Oncol. 2021, 158, 276–284. [Google Scholar] [CrossRef] [PubMed]
- Rosenblatt, E.; Izewska, J.; Anacak, Y.; Pynda, Y.; Scalliet, P.; Boniol, M.; Autier, P. Radiotherapy Capacity in European Countries: An Analysis of the Directory of Radiotherapy Centres (DIRAC) Database. Lancet Oncol. 2013, 14, e79–e86. [Google Scholar] [CrossRef]
- Yap, M.L.; Zubizarreta, E.; Bray, F.; Ferlay, J.; Barton, M. Global Access to Radiotherapy Services: Have We Made Progress During the Past Decade? J. Glob. Oncol. 2016, 2, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, F.; MacNeill, F.; Penault-Llorca, F.; Eniu, A.; Sardanelli, F.; Nordström, E.B.; Poortmans, P. Why Is Appropriate Healthcare Inaccessible for Many European Breast Cancer Patients?—The EBCC 12 Manifesto. Breast 2021, 55, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Marta, G.N.; Ramiah, D.; Kaidar-Person, O.; Kirby, A.; Coles, C.; Jagsi, R.; Hijal, T.; Sancho, G.; Zissiadis, Y.; Pignol, J.-P.; et al. The Financial Impact on Reimbursement of Moderately Hypofractionated Postoperative Radiation Therapy for Breast Cancer: An International Consortium Report. Clin. Oncol. 2021, 33, 322–330. [Google Scholar] [CrossRef]
- Grover, S.; Xu, M.J.; Yeager, A.; Rosman, L.; Groen, R.S.; Chackungal, S.; Rodin, D.; Mangaali, M.; Nurkic, S.; Fernandes, A.; et al. A Systematic Review of Radiotherapy Capacity in Low- and Middle-Income Countries. Front. Oncol. 2015, 4, 380. [Google Scholar] [CrossRef]
- Dubois, N.; Nguyet Diep, A.; Ghuysen, A.; Declaye, J.; Donneau, A.F.; Vogin, G.; Fleckenstein, J.; Coucke, P.; Ben Mustapha, S. Training of Radiotherapy Professionals: Status, Content, Satisfaction and Improvement Suggestions in the Greater Region. BMC Med. Educ. 2022, 22, 485. [Google Scholar] [CrossRef]
- Oliveira, C.; Barbosa, B.; Couto, J.G.; Bravo, I.; Hughes, C.; McFadden, S.; Khine, R.; McNair, H.A. Advanced Practice Roles amongst Therapeutic Radiographers/Radiation Therapists: A European Survey. Radiography 2023, 29, 261–273. [Google Scholar] [CrossRef]
- Oliveira, C.; Barbosa, B.; Couto, J.G.; Bravo, I.; Khine, R.; McNair, H. Advanced Practice Roles of Therapeutic Radiographers/Radiation Therapists: A Systematic Literature Review. Radiography 2022, 28, 605–619. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; The PRISMA Group. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed]
- Munn, Z.; Barker, T.H.; Moola, S.; Tufanaru, C.; Stern, C.; McArthur, A.; Stephenson, M.; Aromataris, E. Methodological Quality of Case Series Studies: An Introduction to the JBI Critical Appraisal Tool. JBI Evid. Syst. 2020, 18, 2127–2133. [Google Scholar] [CrossRef] [PubMed]
- Carosi, A.; Ingrosso, G.; Turturici, I.; Valeri, S.; Barbarino, R.; Di Murro, L.; Bottero, M.; Lancia, A.; Ponti, E.; Bruni, A.; et al. Whole Breast External Beam Radiotherapy in Elderly Patients Affected by Left-Sided Early Breast Cancer: A Dosimetric Comparison between Two Simple Free-Breathing Techniques. Aging Clin. Exp. Res. 2020, 32, 1335–1341. [Google Scholar] [CrossRef] [PubMed]
- Lamprecht, B.; Muscat, E.; Harding, A.; Howe, K.; Brown, E.; Barry, T.; Mai, G.T.; Lehman, M.; Bernard, A.; Hargrave, C.; et al. Comparison of Whole Breast Dosimetry Techniques—From 3DCRT to VMAT and the Impact on Heart and Surrounding Tissues. J. Med. Radiat. Sci. 2022, 69, 98–107. [Google Scholar] [CrossRef]
- Mishra, A.; Yadav, N.; Sharma, M.; Mittal, K.K.; Mishra, S.P.; Verma, T.R.; Tiwari, S. Dosimetric Evaluation of Three-Dimensional Conformal Radiotherapy, RapidArc, and Hybrid RapidArc Radiotherapy Techniques for Left-Sided Breast Cancer. J. Med. Phys. 2025, 50, 93–99. [Google Scholar] [CrossRef]
- Piras, A.; Menna, S.; D’Aviero, A.; Marazzi, F.; Mazzini, A.; Cusumano, D.; Massaccesi, M.; Mattiucci, G.C.; Daidone, A.; Valentini, V.; et al. New Fractionations in Breast Cancer: A Dosimetric Study of 3D-CRT versus VMAT. J. Med. Radiat. Sci. 2022, 69, 227–235. [Google Scholar] [CrossRef]
- Redapi, L.; Rossi, L.; Marrazzo, L.; Penninkhof, J.J.; Pallotta, S.; Heijmen, B. Comparison of Volumetric Modulated Arc Therapy and Intensity-Modulated Radiotherapy for Left-Sided Whole-Breast Irradiation Using Automated Planning. Strahlenther. Onkol. 2022, 198, 236–246. [Google Scholar] [CrossRef]
- Viren, T.; Heikkila, J.; Myllyoja, K.; Koskela, K.; Lahtinen, T.; Seppala, J. Tangential Volumetric Modulated Arc Therapy Technique for Left-Sided Breast Cancer Radiotherapy. Radiat. Oncol. 2015, 10, 79. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Hu, B.; Xie, C.; Wang, Y. Dosimetric Comparison of Three Intensity--modulated Radiation Therapies for Left Breast Cancer after Breast--conserving Surgery. J. Appl. Clin. Med. Phys. 2018, 19, 79–86. [Google Scholar] [CrossRef]
- Cuzick, J.; Stewart, H.; Rutqvist, L.; Houghton, J.; Edwards, R.; Redmond, C.; Peto, R.; Baum, M.; Fisher, B.; Host, H. Cause-Specific Mortality in Long-Term Survivors of Breast Cancer Who Participated in Trials of Radiotherapy. J. Clin. Oncol. 1994, 12, 447–453. [Google Scholar] [CrossRef]
- Konstantinou, E.; Varveris, A.; Solomou, G.; Antoniadis, C.; Tolia, M.; Mazonakis, M. Radiation Dose to Critical Cardiac Structures from Three-Dimensional Conformal Radiation Therapy (3D-CRT), Intensity-Modulated Radiation Therapy (IMRT) and Volumetric Modulated Arc Therapy (VMAT) Techniques for Left-Sided Breast Cancer. J. Pers. Med. 2024, 14, 63. [Google Scholar] [CrossRef]
- Cheptea, C.; Loap, P.; Allali, S.; Fourquet, A.; Cao, K.; Kirova, Y. Optimizing the Integration of Modern Systemic Therapies and Advanced Radiotherapy Techniques in Breast Cancer Management: An Expert Opinion from the Institut Curie Breast Radiotherapy Group. Int. J. Cancer 2025. early view. [Google Scholar] [CrossRef]
- Newhauser, W.D.; Durante, M. Assessing the Risk of Second Malignancies after Modern Radiotherapy. Nat. Rev. Cancer 2011, 11, 438–448. [Google Scholar] [CrossRef]
- Offersen, B.V.; Boersma, L.J.; Kirkove, C.; Hol, S.; Aznar, M.C.; Sola, A.B.; Kirova, Y.M.; Pignol, J.-P.; Remouchamps, V.; Verhoeven, K.; et al. ESTRO Consensus Guideline on Target Volume Delineation for Elective Radiation Therapy of Early Stage Breast Cancer. Radiother. Oncol. 2015, 114, 3–10. [Google Scholar] [CrossRef]
- Eldesoky, A.R.; Yates, E.S.; Nyeng, T.B.; Thomsen, M.S.; Nielsen, H.M.; Poortmans, P.; Kirkove, C.; Krause, M.; Kamby, C.; Mjaaland, I.; et al. Internal and External Validation of an ESTRO Delineation Guideline—Dependent Automated Segmentation Tool for Loco-Regional Radiation Therapy of Early Breast Cancer. Radiother. Oncol. 2016, 121, 424–430. [Google Scholar] [CrossRef]
- Mathew, T.; Foroudi, F. Consistency of ESTRO and RTOG Contouring Guidelines for Target Volume Delineation in Early Stage Breast Cancer. Int. J. Radiol. Radiat. Ther. 2020, 7, 133–140. [Google Scholar] [CrossRef]
- Khan, F.M.; Gibbons, J.P. Khan’s the Physics of Radiation Therapy, 6th ed.; Wolters Kluwer: Philadelphia, PA, USA, 2020; ISBN 978-1-4963-9752-2. [Google Scholar]
- Perez, C.; Brady, L. Perez and Brady’s Principles and Practice of Radiation Oncology, 7th ed.; Halperin, E.C., Wazer, D.E., Perez, C.A., Brady, L.W., Eds.; Wolters Kluwer: Philadelphia, PA, USA; Baltimore, MD, USA; New York, NY, USA, 2019; ISBN 978-1-4963-8679-3. [Google Scholar]
- Basran, P.S.; Zavgorodni, S.; Berrang, T.; Olivotto, I.A.; Beckham, W. The Impact of Dose Calculation Algorithms on Partial and Whole Breast Radiation Treatment Plans. Radiat. Oncol. 2010, 5, 120. [Google Scholar] [CrossRef] [PubMed]
- Gaur, G.; Dangwal, V.K.; Banipal, R.P.S.; Singh, R.; Kaur, G.; Grover, R.; Sachdeva, S.; Kang, M.S.; Singh, S.; Garg, P.; et al. Dosimetric Comparison of Different Dose Calculation Algorithms in Postmastectomy Breast Cancer Patients Using Conformal Planning Techniques. J. Med. Phys. 2023, 48, 136–145. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Chua, M.L.K.; Chitapanarux, I.; Kaidar-Person, O.; Mwaba, C.; Alghamdi, M.; Mignola, A.R.; Amrogowicz, N.; Yazici, G.; Bourhaleb, Z.; et al. Global Radiotherapy Demands and Corresponding Radiotherapy-Professional Workforce Requirements in 2022 and Predicted to 2050: A Population-Based Study. Lancet Glob. Health 2024, 12, e1945–e1953. [Google Scholar] [CrossRef]
- Chu, F. The Latest Developments and Applications in Radiation Therapy Equipment and Technology. Int. J. Public Health Med. Res. 2024, 2, 27–32. [Google Scholar] [CrossRef]
- Abdel-Wahab, M.; Gondhowiardjo, S.S.; Rosa, A.A.; Lievens, Y.; El-Haj, N.; Polo Rubio, J.A.; Prajogi, G.B.; Helgadottir, H.; Zubizarreta, E.; Meghzifene, A.; et al. Global Radiotherapy: Current Status and Future Directions—White Paper. JCO Glob. Oncol. 2021, 7, 827–842. [Google Scholar] [CrossRef]
- Christ, S.M.; Willmann, J. Measuring Global Inequity in Radiation Therapy: Resource Deficits in Low- and Middle-Income Countries Without Radiation Therapy Facilities. Adv. Radiat. Oncol. 2023, 8, 101175. [Google Scholar] [CrossRef] [PubMed]
- Ferdinand, S.; Mondal, M.; Mallik, S.; Goswami, J.; Das, S.; Manir, K.S.; Sen, A.; Palit, S.; Sarkar, P.; Mondal, S.; et al. Dosimetric Analysis of Deep Inspiratory Breath-Hold Technique (DIBH) in Left-Sided Breast Cancer Radiotherapy and Evaluation of Pre-Treatment Predictors of Cardiac Doses for Guiding Patient Selection for DIBH. Tech. Innov. Patient Support Radiat. Oncol. 2021, 17, 25–31. [Google Scholar] [CrossRef]
- Stowe, H.B.; Andruska, N.D.; Reynoso, F.; Thomas, M.; Bergom, C. Heart Sparing Radiotherapy Techniques in Breast Cancer: A Focus on Deep Inspiration Breath Hold. Breast Cancer Targets Ther. 2022, 14, 175–186. [Google Scholar] [CrossRef]
- Eckstein, J.; Taylor, P.; Zheng, R.; Lee, L.; Chen, W.; Potters, L.; Evans, C. Implementation of External Beam Five-Fraction Adjuvant Breast Irradiation in a US Center. Cancers 2022, 14, 1556. [Google Scholar] [CrossRef] [PubMed]
- Merten, R.; Fischer, M.; Kopytsia, G.; Wichmann, J.; Lange, T.; Knöchelmann, A.C.; Becker, J.-N.; Klapdor, R.; Hinrichs, J.; Bremer, M. Linac-Based Ultrahypofractionated Partial Breast Irradiation (APBI) in Low-Risk Breast Cancer: First Results of a Monoinstitutional Observational Analysis. Cancers 2023, 15, 1138. [Google Scholar] [CrossRef]
First Author (Year of Publication) | No. Pat. | Median Age in Years (Range) | Respiratory Control | Dose Prescription | TPS Info | Treatment Modality | |
---|---|---|---|---|---|---|---|
Tec. | Description | ||||||
Carosi (2020) [27] | 24 | 69 | Free Breathing | 44 Gy (16 × 2, 75 Gy) | Pinnacle | FiF | Two parallel opposing tangential beams with subfields; 6–10 MV |
IMRT | Same two parallel opposing tangential beams of FiF; 6 MV | ||||||
Haciislamoglu (2015) [4] | 15 | --- | --- | 50 Gy (25 × 2 Gy) | Eclipse | OF | Two parallel opposing tangential beams with wedges |
FiF | Same two parallel opposing tangential beams of OF with 2–4 subfields | ||||||
IMRT | Nine Beams: 2 beams with the same OF and 7 more between them | ||||||
VMAT | Partial Arc; Starting and stopping beam angles of the arc were 10 posterior to tangential fields using OF | ||||||
Jin (2013) [5] | 20 | --- | --- | 50 Gy (25 × 2 Gy) | Pinnacle | OF | Two parallel opposing tangential beams with wedges |
FiF | Same Two parallel opposing tangential beams of OF with 3–5 subfields | ||||||
IMRT | Same Two parallel opposing tangential beams of 3DCRT with subfields | ||||||
IMRT | 7 or 9 IMRT Beams | ||||||
VMAT | 2 Partial Arcs that started and stopped gantry angles same as tangential fields; 6 MV | ||||||
Lamprecht (2022) [28] | 15 | (45–75) | DIBH | 42.5 Gy (16 × 2, 66 Gy) | Pinnacle | FiF | Two parallel opposing tangential beams with wedges and subfields; 6 MV |
Hybrid-IMRT | Two parallel opposing tangential beams with 2–3 IMRT beams; 6 MV | ||||||
Hybrid-VMAT | Two parallel opposing tangential beams with 2 partial arcs; 6 MV | ||||||
VMAT | 2–4 Partial Arcs; 6 MV | ||||||
Mishra (2025) [29] | 20 | 48 (35–79) | --- | 40.05 Gy (15 × 2, 67 Gy) | Eclipse | FiF | Two parallel opposing tangential beams with subfields; 6 MV or 15 MV |
VMAT | 3 Partial Arcs (300–145, 145–300, 300–145) with collimator angles of 5, 355 and 90, respectively; | ||||||
Hybrid-VMAT | 60% of the prescription dose with two parallel opposing tangential beams plus 40% with partial arcs | ||||||
Mo (2017) [7] | 17 | 41 (28–58) | --- | 50 Gy (25 × 2 Gy) | Monaco | OF | Two parallel opposing tangential beams with wedges; 6 MV |
IMRT | 5 Beams (310°, 295°, 90°, 125° and 140°); 6 MV | ||||||
VMAT | 2 Partial Arcs; (60–160° and reverse); 6 MV | ||||||
Nithya (2020) [10] | 22 | 49.7 (29–66) | --- | 40 Gy (15 × 2, 667 Gy) | Eclipse | IMRT | 5 Beams (300°, 315°, 115°, 127°, and 140°); 6 MV |
IMRT | 6 Beams, equidistantly at 40° interval from 300° to 140°; 6 MV | ||||||
VMAT | 2 Partial Arcs; (295–145° and reverse, avoidance sector 0–90°); 6 MV | ||||||
VMAT | 2 Partial Arcs; (295–145° and reverse, without avoidance sector); 6 MV | ||||||
Piras (2022) [30] | 21 | 59.5 (39–79) | --- | 26 Gy (5 × 5, 2 Gy) | Eclipse | FiF | Two parallel opposing tangential beams with subfields. 6 MV–15 MV |
VMAT | 2 Partial Arcs; (310–165° and reverse); 6 MV | ||||||
Ramasubramanian (2019) [12] | 26 | 50 (23–70) | --- | 50 Gy (25 × 2 Gy) | Eclipse | VMAT | 2 Partial Arcs; (300–50° and 50–160°) |
VMAT | 4 Partial Arcs; (300–50° and reverse, plus 50–160° and reverse) | ||||||
VMAT | 4 Tangential Arcs; (300–350° and reverse, plus 110–160° and reverse) | ||||||
Redapi (2022) [31] | 48 | --- | DIBH | 42.56 Gy (16 × 2, 66 Gy) | Monaco | Hybrid-IMRT | 70% of the prescription dose with two parallel opposing tangential beams plus 30% with 2 sliding window IMRT beams |
IMRT | Same beams of Hybrid-IMRT | ||||||
VMAT | 4 Tangential Arcs; (290–350° and reverse, plus 100–160° and reverse) | ||||||
Viren (2015) [32] | 10 | 65 (59–71) | Free Breathing | 50 Gy (25 × 2 Gy) | Monaco | FiF | Two parallel opposing tangential beams with subfields. 6 MV–10 MV |
IMRT | Dynamic Fields with two static tangential fields | ||||||
VMAT | 2 Partial arcs of 240 in length | ||||||
VMAT | 4 Tangential arcs of 50–60 in length | ||||||
Xie (2020) [6] | 15 | --- | Free Breathing | 50 Gy (25 × 2 Gy) | Pinnacle | OF | Two parallel opposing tangential beams with wedges; 6–10–15 MV |
FiF | Same Two parallel opposing tangential beams of OF with 2–3 subfields; 6–15 MV | ||||||
IMRT | Seven beam equidistantly distributed in a sector of 180° that avoided direct exposure to the contralateral breast | ||||||
Hybrid-IMRT | 80% of the prescription dose with two parallel opposing tangential beams plus 20% with 2 dynamic IMRT beams | ||||||
VMAT | 2 Partial Arcs that started and stopped gantry angles same as tangential fields; 6 MV | ||||||
VMAT | 2 Partial Arcs that started and stopped gantry angles same as tangential fields with a rotation of 20 and 340 of couch; 6 MV | ||||||
VMAT | 6 Partial Arcs (3 in one way and the others in reverse with a length of 50) that in total starting and stopping gantry angles same as tangential fields; 6 MV | ||||||
Zhang (2018) [33] | 50 | --- | Free Breathing | 50 Gy (25 × 2 Gy) | Pinnacle | IMRT | 5 beams (Starting and stopping beam angles are the same as conventional tangential opposing beams) |
IMRT | 6 beams (3 beams with a distance from each other between 10 and 20° in upper part of PTV and others 3 in lower part) | ||||||
Hybrid-IMRT | 70–80% of the prescription dose 3DCRT plus 20–30% with dynamic IMRT beams |
First Author (Year of Publication) | Technique | PTV | Ipsilateral Lung | Heart | Contralateral Breast | Contralateral Lung | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CI | HI | D95% | Mean (Gy) | V ≈ 10% (%) | V ≈ 40% (%) | Mean (Gy) | V ≈ 10% (%) | V ≈ 60% (%) | Mean (Gy) | V ≈ 10% (%) | Mean (Gy) | V ≈ 10% (%) | ||
Carosi (2020) [27] | FiF | 0.7 | 0.15 | 91 | 4.4 | --- | --- | 1.9 | --- | --- | --- | --- | --- | --- |
IMRT | 0.7 | 0.15 | 93 | 4.8 | --- | --- | 2 | --- | --- | --- | --- | --- | --- | |
Haciislamoglu (2015) [4] | OF | 0.56 | 0.13 | --- | 7.21 | 18.18 | 12.51 | 4.39 | 10.3 | 5 | 0.55 | 0 | 0.45 | 0 |
FiF | 0.6 | 0.11 | --- | 7.08 | 12.53 | 12.53 | 4.38 | 9.6 | 5.1 | 0.54 | 0 | 0.44 | 0 | |
IMRT | 0.74 | 0.09 | --- | 12.68 | 85.8 | 14.91 | 8.36 | 62.5 | 2.1 | 3.05 | 10.85 | 4.28 | 33.58 | |
VMAT | 0.74 | 0.18 | --- | 11.08 | 73.67 | 13.67 | 9.24 | 69 | 2.1 | 2.56 | 7.99 | 3.03 | 6 | |
Jin (2013) [5] | OF | 0.5 | 0.13 | --- | 8.6 | 25.9 | 16.9 | 3.7 | 10.2 | 4.2 | --- | --- | --- | --- |
FiF | 0.59 | 0.11 | --- | 8.2 | 24.6 | 15 | 3.2 | 8.9 | 3.2 | --- | --- | --- | --- | |
IMRT | 0.63 | 0.11 | --- | 6.8 | 23.4 | 12.9 | 2.2 | 6.3 | 1.2 | --- | --- | --- | --- | |
IMRT | 0.77 | 0.11 | --- | 9.3 | 49.3 | 14.6 | 4.4 | 26.2 | 1 | --- | --- | --- | --- | |
VMAT | 0.71 | 0.14 | --- | 10.1 | 50.3 | 16.4 | 4.6 | 26.1 | 1.1 | --- | --- | --- | --- | |
Lamprecht (2022) [28] | FiF | 0.69 | 0.11 | 97.61 | 5.94 | 21.79 | 12.40 | 1.57 | 4.33 | 0.79 | 0.31 | --- | 0.19 | --- |
Hybrid-IMRT | 0.75 | 0.10 | 97.98 | 5.69 | 22.69 | 10.78 | 1.70 | 4.22 | 0.19 | 0.29 | --- | 0.22 | --- | |
Hybrid-VMAT | 0.76 | 0.10 | 97.49 | 5.31 | 20.74 | 10.15 | 1.29 | 2.67 | 0.19 | 0.32 | --- | 0.22 | --- | |
VMAT | 0.83 | 0.09 | 97.71 | 4.93 | 20.66 | 8.31 | 1.19 | 1.65 | 0 | 0.42 | --- | 0.28 | --- | |
Mishra (2025) [29] | FiF | 0.55 | 0.18 | 92.90 | 11.17 | 29.31 | --- | 4.59 | 9.57 | --- | 0.34 | --- | 0.58 | --- |
VMAT | 0.92 | 0.12 | 98.45 | 13.49 | 53.49 | --- | 6.38 | 14.00 | --- | 3.19 | --- | 3.38 | --- | |
Hybrid-VMAT | 0.89 | 0.13 | 96.05 | 12.66 | 42.46 | --- | 5.63 | 11.72 | --- | 2.26 | --- | 2.58 | --- | |
Mo (2017) [7] | OF | 0.55 | 0.13 | --- | 13.92 | 38.23 | 26.67 | 9.54 | 26.95 | 14.28 | 0.69 | --- | 0.35 | 0.02 |
IMRT | 0.68 | 0.09 | --- | 9.87 | 34.93 | 17.79 | 5.92 | 20.21 | 2.68 | 2.11 | --- | 1.1 | 0.21 | |
VMAT | 0.77 | 0.1 | --- | 8.38 | 32.53 | 13.4 | 4.96 | 17.66 | 1.24 | 3.55 | --- | 1.85 | 3.06 | |
Nithya (2020) [10] | IMRT | 0.91 | 0.09 | 96.71 | 7.72 | 34.99 | 13.51 | 4.33 | 23.335 | --- | 0.54 | --- | 0.36 | 0.3 |
IMRT | 0.94 | 0.09 | 96.84 | 8.69 | 59.95 | 10.41 | 4.57 | 22.97 | --- | 1.66 | --- | 2.09 | 5.11 | |
VMAT | 0.94 | 0.13 | 95.82 | 9.51 | 50.3 | 16.08 | 6.04 | 34.7 | --- | 1.17 | --- | 0.74 | 0.31 | |
VMAT | 0.98 | 0.12 | 95.98 | 9.1 | 53.75 | 13.54 | 5.88 | 35.44 | --- | 2.59 | --- | 2.18 | 8.37 | |
Piras (2022) [30] | FiF | 0.61 | --- | 97.22 | --- | --- | 12.13 | 0.61 | 8.16 | 0.55 | --- | --- | --- | --- |
VMAT | 0.91 | --- | 95.41 | --- | --- | 8.33 | 1.06 | 22.39 | 0.62 | --- | --- | --- | --- | |
Ramasubramanian (2019) [12] | VMAT | 0.87 | 0.084 | 96.24 | 8.56 | 44.8 | 11.22 | 5.9 | 25.16 | --- | 1.38 | 2.58 | 1.27 | 0.51 |
VMAT | 0.88 | 0.076 | 96.62 | 8.47 | 43.81 | 11.03 | 5.72 | 23 | --- | 1.4 | 2.62 | 1.27 | 0.13 | |
VMAT | 0.83 | 0.1 | 95.18 | 8.14 | 40.26 | 11.22 | 5.49 | 22.4 | --- | 0.74 | 2.25 | 0.22 | 0 | |
Redapi (2022) [31] | Hybrid-IMRT | 0.75 | 0.09 | --- | 7.3 | 27.5 | 14.7 | 2.1 | --- | --- | 0.7 | 0 | 0.34 | 0.003 |
IMRT | 0.72 | 0.1 | --- | 7.2 | 26 | 14.5 | 2 | --- | --- | 0.7 | 0 | 0.44 | 0.001 | |
VMAT | 0.85 | 0.09 | --- | 5.2 | 21.3 | 8.6 | 1.6 | --- | --- | 1.1 | 1.1 | 0.68 | 0.002 | |
Viren (2015) [32] | FiF | 0.47 | 0.14 | 91.4 | 10.4 | 32 | 21.4 | 9.1 | --- | 15.2 | 1 | --- | 0.7 | --- |
IMRT | 0.45 | 0.12 | 96.3 | 10.9 | 33.3 | 21.6 | 9.1 | --- | 13.9 | 1 | --- | 0.7 | --- | |
VMAT | 0.5 | 0.1 | 98.1 | 8.7 | 35.5 | 15.3 | 5.5 | --- | 3.4 | 2.6 | --- | 1.6 | --- | |
VMAT | 0.5 | 0.1 | 97.8 | 9.6 | 36.9 | 18.1 | 6.3 | --- | 5.7 | 1.2 | --- | 0.9 | --- | |
Xie (2020) [6] | OF | 0.5 | 0.15 | --- | 6.7 | 18.3 | 12.7 | 9.6 | 25.3 | 15.1 | 2.8 | 4.2 | --- | --- |
FiF | 0.5 | 0.132 | --- | 6.4 | 18.6 | 12.6 | 8.1 | 25.7 | 13.3 | 1.9 | 3.8 | --- | --- | |
IMRT | 0.6 | 0.126 | --- | 6.1 | 17.7 | 12.2 | 8.1 | 23.9 | 12.7 | 1.6 | 4 | --- | --- | |
Hybrid-IMRT | 0.8 | 0.142 | --- | 5.9 | 26.4 | 7.9 | 7.4 | 48.3 | 2.7 | 1.4 | 0.2 | --- | --- | |
VMAT | 0.8 | 0.157 | --- | 6 | 27 | 7.8 | 7.8 | 53.2 | 3.9 | 1.1 | 0.3 | --- | --- | |
VMAT | 0.8 | 0.158 | --- | 5.4 | 24.8 | 6.6 | 5.8 | 30.5 | 2 | 1.2 | 0.2 | --- | --- | |
VMAT | 0.8 | 0.164 | --- | 4.9 | 19.6 | 7.3 | 5.5 | 22.1 | 3.2 | 1.2 | 0.1 | --- | --- | |
Zhang (2018) [33] | IMRT | 0.81 | --- | --- | 11.5 | 43.67 | 22.04 | 14.24 | --- | 4.55 | 4.58 | 44.92 | 5.21 | 51.12 |
IMRT | 0.77 | --- | --- | 11.42 | 44.55 | 20.59 | 5.22 | --- | 1.41 | 1.08 | 2.8 | 0.45 | 0.04 | |
Hybrid-IMRT | 0.75 | --- | --- | 10.36 | 35.02 | 15.49 | 4.31 | --- | 4.3 | 0.94 | 1.62 | 0.39 | 0.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costa, F.M.; Oliveira-Sousa, R.; Pinto, G.; Meireles, P.; Monteiro, A.; Faria, I.; Piñeiro, M.M.; Couto, J.G. Comparison of Radiotherapy Techniques for Left-Sided Early-Stage Breast Cancer Radiotherapy: A Systematic Literature Review on Planning Dose Analysis. Appl. Sci. 2025, 15, 11187. https://doi.org/10.3390/app152011187
Costa FM, Oliveira-Sousa R, Pinto G, Meireles P, Monteiro A, Faria I, Piñeiro MM, Couto JG. Comparison of Radiotherapy Techniques for Left-Sided Early-Stage Breast Cancer Radiotherapy: A Systematic Literature Review on Planning Dose Analysis. Applied Sciences. 2025; 15(20):11187. https://doi.org/10.3390/app152011187
Chicago/Turabian StyleCosta, Fernando M., Rúben Oliveira-Sousa, Gabriela Pinto, Pedro Meireles, Armanda Monteiro, Isabel Faria, Manuel M. Piñeiro, and J. Guilherme Couto. 2025. "Comparison of Radiotherapy Techniques for Left-Sided Early-Stage Breast Cancer Radiotherapy: A Systematic Literature Review on Planning Dose Analysis" Applied Sciences 15, no. 20: 11187. https://doi.org/10.3390/app152011187
APA StyleCosta, F. M., Oliveira-Sousa, R., Pinto, G., Meireles, P., Monteiro, A., Faria, I., Piñeiro, M. M., & Couto, J. G. (2025). Comparison of Radiotherapy Techniques for Left-Sided Early-Stage Breast Cancer Radiotherapy: A Systematic Literature Review on Planning Dose Analysis. Applied Sciences, 15(20), 11187. https://doi.org/10.3390/app152011187