Machine Learning Applications for Earthquake Magnitude Prediction in Western Turkey
Abstract
1. Introduction
2. Data and Data Pre-Processing
3. Methods
3.1. Long Short-Term Memory (LSTM)
3.2. Adaptive Neuro-Fuzzy Inference System (ANFIS)
3.3. Decision Trees (DT)
3.4. Random Forests (RF)
3.5. Convolutional Neural Network (CNN)
4. Applications
4.1. Long Short-Term Memory (LSTM) Application
4.2. Adaptive Neuro-Fuzzy Inference Systems (ANFIS) Application
4.3. Decision Tree (DT) Application
4.4. Random Forest (RF) Application
4.5. One-Dimensional Convolutional Neural Network (1D-CNN) Application
5. Results and Discussions
6. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Geller, R.J. Earthquake prediction: A critical review. Geophys. J. Int. 1997, 131, 425–450. [Google Scholar] [CrossRef]
- Kossobokov, V.G.; Romashkova, L.L.; Keilis-Borok, V.I.; Healy, J.H. Testing earthquake prediction algorithms: Statistically significant advance prediction of the largest earthquakes in the Circum-Pacific, 1992–1997. Phys. Earth Planet. Inter. 1999, 111, 187–196. [Google Scholar] [CrossRef]
- Keilis-Borok, V.I. Earthquake Prediction: State-of-the-Art and Emerging Possibilities. Annu. Rev. Earth Planet. Sci. 2002, 30, 1–33. [Google Scholar] [CrossRef]
- Gorshkov, A.; Kossobokov, V.; Soloviev, A. Recognition of earthquake-prone areas. In Nonlinear Dynamics of the Lithosphere and Earthquake Prediction; Keilis-Borok, V., Soloviev, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2003; pp. 239–310. [Google Scholar]
- Kossobokov, V.G. Earthquake prediction: 20 years of global experiment. Nat. Hazards 2013, 69, 1155–1177. [Google Scholar] [CrossRef]
- Gorshkov, A.; Soloviev, A. Chapter 7—Morphostructural zoning for identifying earthquake-prone areas. In Earthquakes and Sustainable Infrastructure; Elsevier: Amsterdam, The Netherlands, 2022. [Google Scholar] [CrossRef]
- Lomnitz, C. Fundamentals of Earthquake Prediction; Wiley: New York, NY, USA, 1994. [Google Scholar]
- Kaftan, I.; Şalk, M.; Şenol, Y. Evaluation of gravity data by using artificial neural networks case study: Seferihisar geothermal area (Western Turkey). J. Appl. Geophys. 2011, 75, 711–718. [Google Scholar] [CrossRef]
- Kaftan, I.; Sındırgı, P.; Akdemir, O. Inversion of self potential anomalies with Multilayer Perceptron Neural Networks. Pure Appl. Geophys. 2014, 171, 1939–1949. [Google Scholar] [CrossRef]
- Crocker, J.; Kumar, K.; Cox, B. Using explainability to design physics-aware CNNS for solving subsurface inverse problems. Comput. Geotech. 2023, 159, 105452. [Google Scholar] [CrossRef]
- Cho, S.; Pyun, S.; Choi, B.; Lee, G.; Jang, S.; Choi, Y. Prediction of S-wave velocity models from surface waves using deep learning. Near Surf. Geophys. 2023, 22, 281–297. [Google Scholar] [CrossRef]
- Santos, O.S.D.L.; Lemos, B.J.; Souza, D.V.A.P.; Cerqueira, G.A. Automatic Zero-Phase Wavelet Estimation from Seismic Trace Using a Multilayer Perceptron Neural Network: An Application in a Seismic Well-Tie. J. Appl. Geophys. 2024, 222, 105305. [Google Scholar] [CrossRef]
- Zhou, C.; Liu, G.; Liao, S. Probing fractured reservoir of enhanced geothermal systems with fuzzy-genetic inversion model: Impacts of geothermal reservoir environment. Energy 2024, 290, 130320. [Google Scholar] [CrossRef]
- Roy, A.; Ekinci, Y.L.; Balkaya, Ç.; Ai, H. Deep learning-based inversion with discrete cosine transform discretization for two-dimensional basement relief imaging of sedimentary basins from observed gravity anomalies. Geophys. Prospect. 2025, 73, 113–129. [Google Scholar] [CrossRef]
- Toushmalani, R.; Essa, K.S.; Ibraheem, I.M. A Well-Structured Metaheuristic Optimization Technique for Magnetic Data Inversion of 2D Dipping Dyke-like Geological Structures Using the Cuckoo Optimization Algorithm. Arab. J. Sci. Eng. 2025, 50, 6663–6672. [Google Scholar] [CrossRef]
- Kaftan, I.; Şalk, M.; Şenol, Y. Processing of earthquake catalog data of Western Turkey with artificial neural networks and adaptive neuro-fuzzy inference system. Arab. J. Geosci. 2017, 10, 243. [Google Scholar] [CrossRef]
- Jiao, P.; Alavi, A.H. Artificial intelligence in seismology: Advent, performance and future trends. Geosci. Front. 2020, 11, 739–744. [Google Scholar] [CrossRef]
- Gök, E.; Kaftan, I. Prediction of Peak Ground Acceleration by Artificial Neural Network and Adaptive Neuro fuzzy Inference System. Ann. Geophys. 2022, 65, SE106. [Google Scholar] [CrossRef]
- Sedaghati, F.; Pezeshk, S. Ensemble Region-Specific GMMs for Subduction Earthquakes. Seismol. Res. Lett. 2023, 95, 1735–1758. [Google Scholar] [CrossRef]
- Kubo, H.; Naoi, M.; Kano, M. Recent advances in earthquake seismology using machine learning. Earth Planets Space 2024, 76, 36. [Google Scholar] [CrossRef]
- Tan, A.; Horasan, G.; Kalafat, D.; Gülbaği, A. Comparison of a linear discrimination function and artificial neural networks approach to discriminate the seismic events in Ankara (Turkey). Ann. Geophys. 2024, 67, SE321. [Google Scholar] [CrossRef]
- Kolivand, P.; Saberian, P.; Tanhapour, M.; Karimi, F.; Kalhori, S.R.N.; Javanmard, Z.; Heydari, S.; Talari, S.S.H.; Mousavi, S.M.L.; Alidadi, M.; et al. A systematic review of Earthquake Early Warning (EEW) systems based on Artificial Intelligence. Earth Sci. Inform. 2024, 17, 957–984. [Google Scholar] [CrossRef]
- Wang, P.; Ren, T.; Shen, R.; Chen, H.; Liu, X.; Meng, F. Determination of earthquake focal mechanism via multi-task learning. Comput. Geosci. 2024, 184, 105513. [Google Scholar] [CrossRef]
- Bodri, B. A neural network model for earthquake occurrence. J. Geodyn. 2001, 32, 289–310. [Google Scholar] [CrossRef]
- Alves, E.I. Earthquake forecasting using neural networks: Results and future work. Nonlinear Dyn. 2006, 44, 341–349. [Google Scholar] [CrossRef]
- Reyes, J.; Morales-Esteban, A.; Martínez-Álvarez, F. Neural networks to predict earthquakes in Chile. Appl. Soft Comput. 2013, 13, 1314–1328. [Google Scholar] [CrossRef]
- Al Banna, M.H.; Taher, K.A.; Kaiser, M.S.; Mahmud, M.; Rahman, M.S.; Hosen, A.S.; Cho, G.H. Application of artificial intelligence in predicting earthquakes: State-of-the-art and future challenges. IEEE Access 2020, 8, 192880–192923. [Google Scholar] [CrossRef]
- Aslam, B.; Zafar, A.; Khalil, U.; Azam, U. Seismic activity prediction of the northern part of Pakistan from novel machine learning technique. J. Seismol. 2021, 25, 639–652. [Google Scholar] [CrossRef]
- Budiman, K.; Ifriza, Y.N. Analysis of earthquake forecasting using random forest. J. Soft Comput. Explor. 2021, 2, 153–162. [Google Scholar] [CrossRef]
- Berhich, A.; Belouadha, F.Z.; Kabbaj, M.I. A location-dependent earthquake prediction using recurrent neural network algorithms. Soil Dyn. Earthq. Eng. 2022, 161, 107389. [Google Scholar] [CrossRef]
- Bhatia, M.; Ahanger, T.A.; Manocha, A. Artificial intelligence based real-time earthquake prediction. Eng. Appl. Artif. Intell. 2023, 120, 105856. [Google Scholar] [CrossRef]
- Ommi, S.; Hashemi, M. Machine learning technique in the north Zagros earthquake prediction. Appl. Comput. Geosci. 2024, 22, 100163. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Y. A Global Earthquake Prediction Model Based on Spherical Convolutional LSTM. IEEE Trans. Geoscıence Remote Sens. 2024, 62, 1–10. [Google Scholar] [CrossRef]
- Chen, P.; Fang, Y. Development of Attention-Based Bidirectional Long Short-Term Memory Networks for Earthquake Prediction in Taiwan. Nat. Hazards Rev. 2025, 26, 04025026. [Google Scholar] [CrossRef]
- Panakkat, A.; Adeli, H. Neural network models for earthquake magnitude prediction using multiple seismicity indicators. Int. J. Neural Syst. 2007, 17, 13–33. [Google Scholar] [CrossRef]
- Adeli, H.; Panakkat, A. A probabilistic neural network for earthquake magnitude prediction. Neural Netw. 2009, 22, 1018–1024. [Google Scholar] [CrossRef]
- Moustra, M.; Avraamides, M.; Christodoulou, C. Artificial neural networks for earthquake prediction using time series magnitude data or seismic electric signals. Expert Syst. Appl. 2011, 38, 15032–15039. [Google Scholar] [CrossRef]
- Asim, K.M.; Martinez-Alvarez, F.; Basit, A.; Iqbal, T. Earthquake magnitude prediction in Hindukush region using machine learning techniques. Nat. Hazards 2017, 85, 471–486. [Google Scholar] [CrossRef]
- Pandit, A.; Biswal, K.C. Prediction of earthquake magnitude using adaptive neuro fuzzy inference system. Earth Sci. Inform. 2019, 12, 513–524. [Google Scholar] [CrossRef]
- Asim, K.M.; Moustafa, S.S.R.; Niaz, I.A.; Elawadi, E.A.; Iqbal, T.; Martínez-Alvarez, F. Seismicity analysis and machine learning models for short-term low magnitude seismic activity predictions in Cyprus. Soil Dyn. Earthq. Eng. 2020, 130, 105932. [Google Scholar] [CrossRef]
- Abebe, E.; Kebede, H.; Kevin, M.; Demissie, Z. Earthquakes magnitude prediction using deep learning for the Horn of Africa. Soil Dyn. Earthq. Eng. 2023, 170, 107913. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Wang, Z.; Liu, J. Deep learning for magnitude prediction in earthquake early warning. Gondwana Res. 2023, 123, 164–173. [Google Scholar] [CrossRef]
- Berhich, A.; Belouadha, F.Z.; Kabbaj, M.I. An attention-based LSTM network for large earthquake prediction. Soil Dyn. Earthq. Eng. 2023, 165, 107663. [Google Scholar] [CrossRef]
- Öncel Çekim, H.; Karakavak, H.N.; Özel, G.; Tekin, S. Earthquake magnitude prediction in Turkey: A comparative study of deep learning methods, ARIMA and singular spectrum analysis. Environ. Earth Sci. 2023, 82, 387. [Google Scholar] [CrossRef]
- Wessel, P.; Luis, J.F.; Uieda, L.; Scharroo, R.; Wobbe, F.; Smith, W.H.F.; Tian, D. The Generic Mapping Tools version 6. Geochem. Geophys. Geosyst. 2019, 20, 5556–5564. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Gers, F.A.; Schmidhuber, J.; Cummins, F. Learning to Forget: Continual Prediction with LSTM. Neural Comput. 2000, 12, 2451–2471. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.S.R. ANFIS: Adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 1993, 23, 665–685. [Google Scholar] [CrossRef]
- Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees; Wadsworth: Monterey, CA, USA, 1984; 368p. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y. Convolutional networks for images, speech, and time series. In The Handbook of Brain Theory and Neural Networks; Hal Open Science: Lyon, France, 1998. [Google Scholar]
Methods | RMSE | MSE | MAE | MAPE (%) |
---|---|---|---|---|
LSTM | 0.1391 | 0.0193 | 0.1046 | 3.0631 |
ANFIS | 0.1998 | 0.0399 | 0.1530 | 4.4062 |
DT | 0.2683 | 0.0720 | 0.2147 | 6.6231 |
RF | 0.1999 | 0.0400 | 0.1557 | 4.6044 |
1D-CNN | 0.1609 | 0.0259 | 0.1277 | 3.6695 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaftan, I. Machine Learning Applications for Earthquake Magnitude Prediction in Western Turkey. Appl. Sci. 2025, 15, 10909. https://doi.org/10.3390/app152010909
Kaftan I. Machine Learning Applications for Earthquake Magnitude Prediction in Western Turkey. Applied Sciences. 2025; 15(20):10909. https://doi.org/10.3390/app152010909
Chicago/Turabian StyleKaftan, Ilknur. 2025. "Machine Learning Applications for Earthquake Magnitude Prediction in Western Turkey" Applied Sciences 15, no. 20: 10909. https://doi.org/10.3390/app152010909
APA StyleKaftan, I. (2025). Machine Learning Applications for Earthquake Magnitude Prediction in Western Turkey. Applied Sciences, 15(20), 10909. https://doi.org/10.3390/app152010909