Phytochemical and Metabolomic Investigation of a Popular Traditional Plant from La Réunion: Psiloxylon mauritianum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Collection
2.2. Metabolite Extraction
2.3. UPLC-HRMS/MS Analyses and Ion Identity Molecular Networking
2.4. Isolation and Characterization of Compounds
2.5. Cell, Virus, and Biological Reagents
2.6. Flow Cytometric Assay
2.7. Antiviral Assay
2.8. Cytotoxic Assay on Vero Cells
2.9. Cell Viability Assay on Cancerous Cell Lines
3. Results and Discussion
3.1. Ion Identity Molecular Network Investigation of P. mauritianum Ethyl Acetate Extract
3.2. Isolation and Characterization of Compounds by NMR
3.3. Biological Evaluations
3.4. Further Metabolite Investigations of Different P. mauritianum Specimens
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Yields, Chemical Characterization and References for Isolated Compounds
References
- Smadja, J.; Marodon, C. Le Grand Livre Des Plantes Médicinale de l’île de La Réunion Inscrites à La Pharmacopée Française (Tome 1); Editions Orphie: Saint-Denis, La Réunion, 2016; p. 232. ISBN 979-10-298-0092-4. [Google Scholar]
- Mahomoodally, M.; Korumtollee, H.; Chady, Z. Psiloxylon mauritianum (Bouton Ex Hook.f.) Baillon (Myrtaceae)-a Promising Traditional Medicinal Plant from the Mascarene Islands. J. Intercult. Ethnopharmacol. 2014, 3, 192. [Google Scholar] [CrossRef] [PubMed]
- Rangasamy, O.; Mahomoodally, F.M.; Gurib-Fakim, A.; Quetin-Leclercq, J. Two Anti-Staphylococcal Triterpenoid Acids Isolated from Psiloxylon mauritianum (Bouton Ex Hook.f.) Baillon, an Endemic Traditional Medicinal Plant of Mauritius. S. Afr. J. Bot. 2014, 93, 198–203. [Google Scholar] [CrossRef]
- Clain, E.; Haddad, J.G.; Koishi, A.C.; Sinigaglia, L.; Rachidi, W.; Desprès, P.; NDuarte dos Santos, C.; Guiraud, P.; Jouvenet, N.; El Kalamouni, C. The Polyphenol-Rich Extract from Psiloxylon mauritianum, an Endemic Medicinal Plant from Reunion Island, Inhibits the Early Stages of Dengue and Zika Virus Infection. Int. J. Mol. Sci. 2019, 20, 1860. [Google Scholar] [CrossRef]
- Sorres, J.; André, A.; Elslande, E.V.; Stien, D.; Eparvier, V. Potent and Non-Cytotoxic Antibacterial Compounds Against Methicillin-Resistant Staphylococcus Aureus Isolated from Psiloxylon mauritianum, A Medicinal Plant from Reunion Island. Molecules 2020, 25, 3565. [Google Scholar] [CrossRef]
- Checkouri, E.; Reignier, F.; Robert-Da Silva, C.; Meilhac, O. Evaluation of Polyphenol Content and Antioxidant Capacity of Aqueous Extracts from Eight Medicinal Plants from Reunion Island: Protection against Oxidative Stress in Red Blood Cells and Preadipocytes. Antioxidants 2020, 9, 959. [Google Scholar] [CrossRef]
- Ghaddar, B.; Gence, L.; Veeren, B.; Bringart, M.; Bascands, J.-L.; Meilhac, O.; Diotel, N. Aqueous Extract of Psiloxylon mauritianum, Rich in Gallic Acid, Prevents Obesity and Associated Deleterious Effects in Zebrafish. Antioxidants 2022, 11, 1309. [Google Scholar] [CrossRef]
- Schmid, R.; Heuckeroth, S.; Korf, A.; Smirnov, A.; Myers, O.; Dyrlund, T.S.; Bushuiev, R.; Murray, K.J.; Hoffmann, N.; Lu, M.; et al. Integrative Analysis of Multimodal Mass Spectrometry Data in MZmine 3. Nat. Biotechnol. 2023, 41, 447–449. [Google Scholar] [CrossRef] [PubMed]
- Myers, O.D.; Sumner, S.J.; Li, S.; Barnes, S.; Du, X. One Step Forward for Reducing False Positive and False Negative Compound Identifications from Mass Spectrometry Metabolomics Data: New Algorithms for Constructing Extracted Ion Chromatograms and Detecting Chromatographic Peaks. Anal. Chem. 2017, 89, 8696–8703. [Google Scholar] [CrossRef] [PubMed]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Gadea, G. A Robust Method for the Rapid Generation of Recombinant Zika Virus Expressing the GFP Reporter Gene. Virology 2016, 497, 157–162. [Google Scholar] [CrossRef]
- Dührkop, K.; Fleischauer, M.; Ludwig, M.; Aksenov, A.A.; Melnik, A.V.; Meusel, M.; Dorrestein, P.C.; Rousu, J.; Böcker, S. SIRIUS 4: A Rapid Tool for Turning Tandem Mass Spectra into Metabolite Structure Information. Nat. Methods 2019, 16, 299–302. [Google Scholar] [CrossRef] [PubMed]
- Sumner, L.W.; Amberg, A.; Barrett, D.; Beale, M.H.; Beger, R.; Daykin, C.A.; Goodacre, R.; Griffin, J.L.; Hankemeier, T.; Hardy, N.; et al. Proposed Minimum Reporting Standards for Chemical Analysis. Metabolomics 2007, 3, 211–221. [Google Scholar] [CrossRef]
- Narwal, S. Exploring Chalcone Derivatives: Synthesis and Their Therapeutic Potential. J. Mol. Struct. 2024, 1303, 137554. [Google Scholar] [CrossRef]
- Huang, C.-F.; Hung, T.-W.; Yang, S.-F.; Tsai, Y.-L.; Yang, J.-T.; Lin, C.; Hsieh, Y.-H. Asiatic Acid from Centella Asiatica Exert Anti-Invasive Ability in Human Renal Cancer Cells by Modulation of ERK/P38MAPK-Mediated MMP15 Expression. Phytomedicine 2022, 100, 154036. [Google Scholar] [CrossRef]
- Sung, B.; Kang, Y.J.; Kim, D.H.; Hwang, S.Y.; Lee, Y.; Kim, M.; Yoon, J.-H.; Kim, C.M.; Chung, H.Y.; Kim, N.D. Corosolic Acid Induces Apoptotic Cell Death in HCT116 Human Colon Cancer Cells through a Caspase-Dependent Pathway. Int. J. Mol. Med. 2014, 33, 943–949. [Google Scholar] [CrossRef] [PubMed]
- Rzeski, W.; Stepulak, A.; Szymański, M.; Sifringer, M.; Kaczor, J.; Wejksza, K.; Zdzisińska, B.; Kandefer-Szerszeń, M. Betulinic Acid Decreases Expression of Bcl-2 and Cyclin D1, Inhibits Proliferation, Migration and Induces Apoptosis in Cancer Cells. Naunyn-Schmied Arch. Pharmacol. 2006, 374, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.-B.; Ma, S.-Y.; Liu, H.-X.; Huang, C.-S.; Liao, N. Cytotoxic Triterpenoids from Roots of Actinidia chinensis. Chem. Biodivers. 2018, 15, e1700454. [Google Scholar] [CrossRef]
- Reyes-Zurita, F.J.; Rufino-Palomares, E.E.; Lupiáñez, J.A.; Cascante, M. Maslinic Acid, a Natural Triterpene from Olea Europaea L., Induces Apoptosis in HT29 Human Colon-Cancer Cells via the Mitochondrial Apoptotic Pathway. Cancer Lett. 2009, 273, 44–54. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zhang, Z.-Q.; Zhou, X.-D.; Yao, Q.-Y.; Chen, Z.-L.; Chu, L.-L.; Yu, H.-H.; Yang, Y.-P.; Li, B.; Wang, W. New Terpenoids from Potentilla Freyniana Bornm. and Their Cytotoxic Activities. Molecules 2022, 27, 3665. [Google Scholar] [CrossRef]
- Gaudry, A.; Bos, S.; Viranaicken, W.; Roche, M.; Krejbich-Trotot, P.; Gadea, G.; Desprès, P.; El-Kalamouni, C. The Flavonoid Isoquercitrin Precludes Initiation of Zika Virus Infection in Human Cells. Int. J. Mol. Sci. 2018, 19, 1093. [Google Scholar] [CrossRef] [PubMed]
- Wong, G.; He, S.; Siragam, V.; Bi, Y.; Mbikay, M.; Chretien, M.; Qiu, X. Antiviral Activity of Quercetin-3-β-O-D-Glucoside against Zika Virus Infection. Virol. Sin. 2017, 32, 545–547. [Google Scholar] [CrossRef]
- Peyrat, L.-A.; Eparvier, V.; Eydoux, C.; Guillemot, J.-C.; Stien, D.; Litaudon, M. Chemical Diversity and Antiviral Potential in the Pantropical Diospyros Genus. Fitoterapia 2016, 112, 9–15. [Google Scholar] [CrossRef]
- Loe, M.W.C.; Hao, E.; Chen, M.; Li, C.; Lee, R.C.H.; Zhu, I.X.Y.; Teo, Z.Y.; Chin, W.-X.; Hou, X.; Deng, J.; et al. Betulinic Acid Exhibits Antiviral Effects against Dengue Virus Infection. Antivir. Res. 2020, 184, 104954. [Google Scholar] [CrossRef]
- Baltina, L.A.; Flekhter, O.B.; Nigmatullina, L.R.; Boreko, E.I.; Pavlova, N.I.; Nikolaeva, S.N.; Savinova, O.V.; Tolstikov, G.A. Lupane Triterpenes and Derivatives with Antiviral Activity. Bioorganic Med. Chem. Lett. 2003, 13, 3549–3552. [Google Scholar] [CrossRef]
- Katz, E.; Li, J.; Jaegle, B.; Ashkenazy, H.; Abrahams, S.R.; Bagaza, C.; Holden, S.; Pires, C.J.; Angelovici, R.; Kliebenstein, D.J. Genetic Variation, Environment and Demography Intersect to Shape Arabidopsis Defense Metabolite Variation across Europe. Plant Biol. 2021, 10, e67784. [Google Scholar]
- He, Y.; Xu, D.; Li, L. Biosynthetic Mechanisms of Secondary Metabolites Promoted by the Interaction Between Endophytes and Plant Hosts. Front. Microbiol. 2022, 13, 928967. [Google Scholar]
- Li, Z.; Xiong, K.; Wen, W.; Li, L.; Xu, D. Functional Endophytes Regulating Plant Secondary Metabolism: Current Status, Prospects and Applications. Int. J. Mol. Sci. 2023, 24, 1153. [Google Scholar] [CrossRef]
- Li, X.-C.; Joshi, A.S.; ElSohly, H.N.; Khan, S.I.; Jacob, M.R.; Zhang, Z.; Khan, I.A.; Ferreira, D.; Walker, L.A.; Broedel, S.E.; et al. Fatty Acid Synthase Inhibitors from Plants: Isolation, Structure Elucidation, and SAR Studies. J. Nat. Prod. 2002, 65, 1909–1914. [Google Scholar] [CrossRef]
- Du, Q.; Jerz, G.; Chen, P.; Winterhalter, P. Preparation of Ursane Triterpenoids from Centella Asiatica Using High Speed Countercurrent Chromatography with Step-Gradient Elution. J. Liq. Chromatogr. Relat. Technol. 2004, 27, 2201–2215. [Google Scholar] [CrossRef]
- Ma, J.T.; Li, D.W.; Liu, J.K.; He, J. Advances in Research on Chemical Constituents and Their Biological Activities of the Genus Actinidia. Nat. Prod. Bioprospecting 2021, 11, 573–609. [Google Scholar] [CrossRef] [PubMed]
- Aguirre, M.C.; Delporte, C.; Backhouse, N.; Erazo, S.; Letelier, M.E.; Cassels, B.K.; Silva, X.; Alegría, S.; Negrete, R. Topical Anti-Inflammatory Activity of 2α-Hydroxy Pentacyclic Triterpene Acids from the Leaves of Ugni Molinae. Bioorganic Med. Chem. 2006, 14, 5673–5677. [Google Scholar] [CrossRef] [PubMed]
- Rudiyansyah; Garson, M.J. Secondary Metabolites from the Wood Bark of Durio z Ibethinus and Durio k Utejensis. J. Nat. Prod. 2006, 69, 1218–1221. [Google Scholar] [CrossRef]
- Okada, Y.; Omae, A.; Okuyama, T. A New Triterpenoid Isolated from Lagerstronemia Speciosa (L.) PERS. Chem. Pharm. Bull. 2003, 51, 452–454. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, Y.; Sakai, K.; Matsunaga, S.; Tokuda, H.; Tanaka, R. Cancer Chemopreventive Effect of Orally Administrated Lupane-Type Triterpenoid on Ultraviolet Light B Induced Photocarcinogenesis of Hairless Mouse. Cancer Lett. 2006, 240, 94–101. [Google Scholar] [CrossRef]
- Guo, X.; Wang, D.; Duan, W.; Du, J.; Wang, X. Preparative Isolation and Purification of Four Flavonoids from the Petals of Nelumbo Nucifera by High-Speed Counter-Current Chromatography. Phytochem. Anal. 2010, 21, 268–272. [Google Scholar] [CrossRef] [PubMed]
- Hufford, C.D.; Oguntimein, B.O. New Dihydrochalcones and Flavanones From Uvaria Angolensis. J. Nat. Prod. 1982, 45, 337–342. [Google Scholar] [CrossRef]
- Pavan, F.R.; Leite, C.Q.F.; Coelho, R.G.; Coutinho, I.D.; Honda, N.K.; Cardoso, C.A.L.; Vilegas, W.; Leite, S.R.d.A.; Sato, D.N. Evaluation of Anti-Mycobacterium Tuberculosis Activity of Campomanesia Adamantium (Myrtaceae). Quím. Nova 2009, 32, 1222–1226. [Google Scholar] [CrossRef]
n° | δ13C, Type | δ1H (J in Hz) | COSY 1H-1H | HMBC 2−3J1H-13C | NOESY 1H-1H |
---|---|---|---|---|---|
1 | 34.7, CH2 | 1.68, m | 1, 2 | 2, 3, 10 | 25 |
2 | 30.2, CH2 | 2.12, m | 1, 2 | 1, 3, 10 | |
3 | 179.2, C | ||||
4 | 26.5, CH | 1.92, m | 23, 24 | 6, 10, 23, 24 | 23, 24 |
5 | 48.6, CH | 1.05, brd (10.5, 3.3) | 6 | 6, 10, 23, 24 | 9, 23 |
6 | 19.3, CH2 | 1.38, m | 5 | 7 | 23, 24 |
7 | 34.5, CH2 | 1.38, m | 6, 26 | 26, 27 | |
8 | 41.7, C | ||||
9 | 42.2, CH | 1.56, dd (12.7, 2.9) | 11a, 11b | 8, 10, 11, 26 | 5, 11b, 27 |
10 | 41.4, C | ||||
11a 11b | 22.7, CH2 | 1.25 qd (13.2, 4.3) 1.44 m | 9, 11b, 12b 11a, 12a | 9 | 25, 26 9 |
12a 12b | 26.8, CH2 | 1.08 qd (13.2, 4.6) 1.72 m | 11b, 12b, 13 11a, 12a | 13 | 19 |
13 | 39.8, CH | 2.33 td (12.3, 3.6) | 12a, 12b, 18 | 12, 14, 18, 27 | 19, 26 |
14 | 44.1, C | ||||
15a 15b | 30.9, CH2 | 1.21 dt (13.5, 2.9) 1.52 td (13.5, 3.5) | 15b, 16b 15a | 13, 14, 16, 17 14, 16, 27 | 16b, 26 |
16a 16b | 33.3, CH2 | 1.43 m 2.24 dt (12.9, 3.2) | 16b 15a, 16a | 17, 28 14, 15, 17, 18, 28 | 18 15b, 22b |
17 | 57.5, C | ||||
18 | 50.4, CH | 1.65, t (11.2) | 13, 19 | 13, 17, 19, 20, 28 | 16a, 22a, 27, 30 |
19 | 48.5, CH | 3.03, td (11.2, 5.0) | 18, 21a, 21b | 13, 18, 20, 21, 29, 30 | 12b, 13, 21b, 29b |
20 | 151.8, C | ||||
21a 21b | 31.8, CH2 | 1.39, m 1.94, m | 19 19 | 19 17, 18 | 19 |
22a 22b | 38.2, CH2 | 1.44, m 1.90, m | 28 17 | 18 16b | |
23 | 25.2, CH3 | 0.92, d (6.8) | 4 | 4, 5, 24 | 4, 5, 6, 24 |
24 | 19.3, CH3 | 0.81, d (6.8) | 4 | 4, 5, 23 | 4, 6, 23 |
25 | 20.3, CH3 | 0.82, s | 1, 5, 9, 10 | 1, 11a, 26 | |
26 | 16.6, CH3 | 0.98, s | 7, 8, 9, 14 | 7, 11a, 13, 15b, 25 | |
27 | 15.1, CH3 | 1.02, s | 8, 13, 14, 15 | 7, 9, 18 | |
28 | 180.0, C | ||||
29a 29b | 110.2, CH2 | 4.60, m 4.72, m | 29b, 30 29a, 30 | 19, 20, 21, 30 19, 20, 21, 30 | 30 19, 30 |
30 | 19.5, CH3 | 1.70, s | 29a, 29b | 19, 20, 29 | 18, 29a, 29b |
EtOAc Extract | Cell Lines | |
---|---|---|
Concentration (µg/mL) | K562 | A2780 |
10 | 41 ± 2 | 35 ± 4 |
1 | 89 ± 3 | 83 ± 2 |
Fraction Tested | Antiviral Activity IC50 (µg/mL) | Compounds Isolated from the Fraction |
---|---|---|
EtOAc extract | 25.81 ± 0.20 | |
F1 | 52.38 ± 0.05 | |
F2 | 62.91 ± 0.07 | 13 |
F3 | >100 | 2–8, 14 |
F4 | >100 | |
F5 | 17.57 ± 0.10 | 1, 9–12, 15 |
F6 | >100 | |
F7 | >100 | |
F8 | >100 |
Compound | Antiviral Activity IC50 (µM) | Cell Toxicity CC50 (µM) | Selectivity index SI (CC50/IC50) |
---|---|---|---|
Positive control Q3G | 4.22 ± 0.11 | 96.26 ± 0.07 | 22.81 |
Corosolic acid (10) | 26.80 ± 6.80 | 31.14 ± 0.03 | 1.16 |
Betulinic acid (11) | 20.21± 0.10 | 22.40 ± 0.09 | 1.11 |
Maslinic acid (9) | 82.97 ± n/a | 84.57 ± 0.04 | 1.02 |
Asiatic acid+ Arjulonic acid (5 + 6) | 98.57 ± 0.21 | 73.07 ± 0.06 | 0.74 |
New compound (1) | 70.28 ±1.48 | 41.93 ± 0.08 | 0.60 |
Betunolic acid (12) | 57.55 ± 0.31 | 24.47 ± 0.05 | 0.43 |
Alphitolic acid (8) | >100 | - | - |
Astragalin (13) | >100 | - | - |
Actinidic acid (4) | >100 | - | - |
Terminolic acid + Madecassic acid (2 + 3) | >100 | - | - |
3b,23-dihydroxy-1-oxo-olean-12-en-28-oic acid (7) | >100 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ozga, T.; Herbette, G.; Carriere Richez, P.; Clerc, P.; Haddad, J.; El Kalamouni, C.; Bignon, J.; Marcellin-Gros, R.; Ferreira Queiroz, E.; Wolfender, J.-L.; et al. Phytochemical and Metabolomic Investigation of a Popular Traditional Plant from La Réunion: Psiloxylon mauritianum. Appl. Sci. 2025, 15, 496. https://doi.org/10.3390/app15020496
Ozga T, Herbette G, Carriere Richez P, Clerc P, Haddad J, El Kalamouni C, Bignon J, Marcellin-Gros R, Ferreira Queiroz E, Wolfender J-L, et al. Phytochemical and Metabolomic Investigation of a Popular Traditional Plant from La Réunion: Psiloxylon mauritianum. Applied Sciences. 2025; 15(2):496. https://doi.org/10.3390/app15020496
Chicago/Turabian StyleOzga, Théo, Gaëtan Herbette, Patrick Carriere Richez, Patricia Clerc, Juliano Haddad, Chaker El Kalamouni, Jérôme Bignon, Rémy Marcellin-Gros, Emerson Ferreira Queiroz, Jean-Luc Wolfender, and et al. 2025. "Phytochemical and Metabolomic Investigation of a Popular Traditional Plant from La Réunion: Psiloxylon mauritianum" Applied Sciences 15, no. 2: 496. https://doi.org/10.3390/app15020496
APA StyleOzga, T., Herbette, G., Carriere Richez, P., Clerc, P., Haddad, J., El Kalamouni, C., Bignon, J., Marcellin-Gros, R., Ferreira Queiroz, E., Wolfender, J.-L., Smadja, J., & Gauvin-Bialecki, A. (2025). Phytochemical and Metabolomic Investigation of a Popular Traditional Plant from La Réunion: Psiloxylon mauritianum. Applied Sciences, 15(2), 496. https://doi.org/10.3390/app15020496