Non-Destructive Classification of Sweetness and Firmness in Oranges Using ANFIS and a Novel CCI–GLCM Image Descriptor
Abstract
1. Introduction
1.1. Motivations
- Current citrus quality assessments still rely mainly on destructive methods (HPLC, refractometry, and penetrometry), which are accurate but time-consuming, costly, and unsuitable for large-scale applications.
- The Citrus Color Index (CCI) has been widely used to monitor ripening, but since it only captures chromatic information, it ignores important structural attributes of the fruit surface.
- Texture features derived from the Gray Level Co-occurrence Matrix (GLCM) have been applied in fruit quality studies, but usually as standalone descriptors, limiting their predictive power.
- To date, there is no integrative descriptor that combines chromatic (CCI) and textural (GLCM) features for estimating internal quality parameters such as soluble solids content (°Brix) and firmness in citrus.
- There is a strong need for non-destructive, low-cost, and real-time methods to optimize postharvest handling and support decision-making in the citrus industry.
1.2. Contributions
- We introduce a novel hybrid descriptor: Citrus Color Index—GLCM Texture Features (CCI–GLCM-TF), which fuses color (CCI) with texture metrics (contrast, correlation, energy, and homogeneity).
- A multiscale approach is implemented (ROIs of 3 × 3, 5 × 5, 11 × 11, and 21 × 21 pixels) to capture surface variations at different resolutions.
- An Adaptive Neuro-Fuzzy Inference System (ANFIS) is employed to model nonlinear relationships and gradual transitions in citrus ripening, predicting maturity index, °Brix, and firmness.
- The proposed ANFIS models achieved and RMSE across all parameters, outperforming approaches based only on color or texture.
- The discriminative capacity of the descriptor was statistically validated, showing significant differences between maturity classes ().
- This study demonstrates the feasibility of implementing the approach in low-cost vision systems (e.g., webcams), enabling automatic classification, process optimization, and postharvest loss reduction.
2. Materials and Methods
2.1. Samples
2.2. General Structure of the Computer Vision System
2.3. Image Acquisition
- Isolation subsystem: A matte black chassis with internal dimensions of 38 cm × 38 cm × 43 cm was used to minimize external lighting disturbances.
- Lighting subsystem: A circular LED ring with a diameter of 30 cm and a power of 5.4 watts was placed 30 cm above the sample. This configuration provided uniform and diffuse illumination with an intensity of approximately 200 lux.
- Image capture subsystem: Images were captured using a Logitech C920 webcam (Logitech, Lausanne, Switzerland) with a resolution of 3 megapixels. The camera was mounted vertically and aligned to maintain a fixed distance of 30 cm from the fruit surface at an angle of 28.8°.
- Processing subsystem: The captured images were processed using an Acer Nitro AN515 laptop (Acer, Mexico City, Mexico) (Model: LAPTOP-5QVVUEQC), equipped with an Intel Core i5-11400H processor, 16 GB of RAM, and an NVIDIA GeForce RTX 3050 GPU.
2.4. Camera Geometric Calibration
3. Evaluation of Dehazing Methods
3.1. Characteristics of the Evaluated Methods
- FFA-Net (Feature Fusion Attention Network) [49]: A convolutional neural network with hierarchical attention. Its architecture includes three FAAttentionLayer blocks interleaved with convolutional layers and ReLU activations. The output is normalized using a tanh layer and rescaled to the range [0, 1]. This method is designed to preserve fine details through spatial attention mechanisms.
- VNDHR (Variational Nighttime Dehazing with Hybrid Regularization) [49]: A classical method that applies Gaussian smoothing (imgaussfilt) to obtain a smooth component S, extracts the detail , limits it to the range , and enhances it with bilateral filtering (imbilatfilt). The corrected image is reconstructed as and normalized with mat2gray. This method is effective for reducing noise without losing local contrast.
- GASSDN (Generative Adversarial Self-Supervised Dehazing Network) [48]: A simplified GAN-based self-supervised approach. A Gaussian smoothing() is applied, the residue is computed as , and the corrected image is reconstructed as , followed by normalization. It balances smoothness and edge preservation.
- ZID (Zero-Input Dehazing based on Dark Channel Prior) [49]: A classical method derived from the Dark Channel Prior proposed by He, Sun, and Tang. In this implementation, adaptive histogram equalization (adapthisteq) is applied independently on each RGB channel. Although simpler, it effectively improves contrast and saturation while preserving global structure.
- IMRH (Iterative Multiresolution Histogram-based Dehazing) [46]: Implemented in MATLAB, it estimates atmospheric light through quad-tree subdivision after white balance. The optimal transmission is computed by maximizing an entropy- and fidelity-based objective function, refined using Weighted Least Squares (WLS) filtering. It enhances contrast while maintaining chromatic fidelity, suitable for agricultural analysis.
3.2. Comparative Performance Analysis of Samples
3.3. Fruit Segmentation
3.4. Obtaining the Region of Interest and Citrus Color Index (CCI)
3.5. Obtaining the Gray Level Co-Cocurrence Matrix (GCLM) and Textures
- i and j denote the gray level values of pixel pairs in the co-occurrence matrix;
- is the normalized probability of the co-occurrence of gray levels i and j;
- and are the means of the marginal distributions of with respect to i and j;
- and are the corresponding standard deviations.
3.6. Adaptive Neuro-Fuzzy Inference System (ANFIS)
4. Results
4.1. Maturity Prediction
4.2. Degree Brix Prediction
4.3. Firmness Prediction
4.4. Comparison of RMSE and MAE
4.5. Statistical Significance and Robustness Analysis
- Normality was assessed for each class group using the Lilliefors test.
- Homogeneity of variances was evaluated using Levene’s test.
- Depending on the assumptions, either classical one-way ANOVA, Welch ANOVA, or Kruskal–Wallis was applied.
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, Y.R.; Chao, K.; Kim, M.S. Machine vision technology for agricultural applications. Comput. Electron. Agric. 2002, 36, 173–191. [Google Scholar] [CrossRef]
- Brosnan, T.; Sun, D.W. Inspection and grading of agricultural and food products by computer vision systems—A review. Comput. Electron. Agric. 2002, 36, 193–213. [Google Scholar] [CrossRef]
- Barrett, D.M.; Beaulieu, J.C.; Shewfelt, R. Color, flavor, texture, and nutritional quality of fresh-cut fruits and vegetables: Desirable levels, instrumental and sensory measurement, and the effects of processing. Crit. Rev. Food Sci. Nutr. 2010, 50, 369–389. [Google Scholar] [CrossRef]
- Liu, C.; Hao, G.; Su, M.; Chen, Y.; Zheng, L. Potential of Multispectral Imaging Combined with Chemometric Methods for Rapid Detection of Sucrose Adulteration in Tomato Paste. J. Food Eng. 2017, 215, 78–83. [Google Scholar] [CrossRef]
- Pathmanaban, P.; Gnanavel, B.; Anandan, S.S. Recent application of imaging techniques for fruit quality assessment. Trends Food Sci. Technol. 2019, 94, 32–42. [Google Scholar] [CrossRef]
- Gupta, A.K.; Pathak, U.; Tongbram, T.; Medhi, M.; Terdwongworakul, A.; Magwaza, L.S.; Mditshwa, A.; Chen, T.; Mishra, P. Emerging approaches to determine maturity of citrus fruit. Crit. Rev. Food Sci. Nutr. 2022, 62, 5245–5266. [Google Scholar] [CrossRef]
- Ruiz-Altisent, M.; Ruiz-Garcia, L.; Moreda, G.; Lu, R.; Hernandez-Sanchez, N.; Correa, E.; Diezma, B.; Nicolaï, B.; García-Ramos, J. Sensors for product characterization and quality of specialty crops—A review. Comput. Electron. Agric. 2010, 74, 176–194. [Google Scholar] [CrossRef]
- Olaniran, A.F.; Adeyanju, A.A.; Olaniran, O.D.; Erinle, C.O.; Okonkwo, C.E.; Taiwo, A.E. Improvement of food aroma and sensory attributes of processed food products using essential oils/boosting up the organoleptic properties and nutritive of different food products. In Applications of Essential Oils in the Food Industry; Elsevier: Amsterdam, The Netherlands, 2024; pp. 119–128. [Google Scholar]
- Ali, M.M.; Anwar, R.; Yousef, A.F.; Li, B.; Luvisi, A.; De Bellis, L.; Aprile, A.; Chen, F. Influence of Bagging on the Development and Quality of Fruits. Plants 2021, 10, 358. [Google Scholar] [CrossRef] [PubMed]
- Valero, D.; Serrano, M. Postharvest Biology and Technology for Preserving Fruit Quality; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Pereira, C.; Martín, A.; López-Corrales, M.; Córdoba, M.d.G.; Galván, A.I.; Serradilla, M.J. Evaluation of the physicochemical and sensory characteristics of different fig cultivars for the fresh fruit market. Foods 2020, 9, 619. [Google Scholar] [CrossRef] [PubMed]
- Prasanna, V.; Prabha, T.N.; Tharanathan, R.N. Fruit ripening phenomena—An overview. Crit. Rev. Food Sci. Nutr. 2007, 47, 1–19. [Google Scholar] [CrossRef]
- Olagunju, A.I.; Sandewa, O.E. Comparative physicochemical properties and antioxidant activity of dietary soursop milkshake. Beverages 2018, 4, 38. [Google Scholar] [CrossRef]
- Ruby-Figueroa, R.; Nardi, M.; Sindona, G.; Conidi, C.; Cassano, A. A multivariate statistical analyses of membrane performance in the clarification of citrus press liquor. ChemEngineering 2019, 3, 10. [Google Scholar] [CrossRef]
- Donno, D.; Mellano, M.G.; Hassani, S.; De Biaggi, M.; Riondato, I.; Gamba, G.; Giacoma, C.; Beccaro, G.L. Assessing nutritional traits and phytochemical composition of artisan jams produced in comoros islands: Using indigenous fruits with high health-impact as an example of biodiversity integration and food security in rural development. Molecules 2018, 23, 2707. [Google Scholar] [CrossRef]
- Fathy, H.M.; Abd El-Maksoud, A.A.; Cheng, W.; Elshaghabee, F.M. Value-added utilization of citrus peels in improving functional properties and probiotic viability of Acidophilus-bifidus-thermophilus (ABT)-type synbiotic yoghurt during cold storage. Foods 2022, 11, 2677. [Google Scholar] [CrossRef]
- García-Martínez, E.; Camacho, M.d.M.; Martínez-Navarrete, N. In vitro bioaccessibility of bioactive compounds of freeze-dried orange juice co-product formulated with gum Arabic and modified starch. Molecules 2023, 28, 810. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. FAOSTAT. 2024. Available online: https://www.fao.org/faostat/en/#home (accessed on 6 September 2024).
- Padda, M.S.; do Amarante, C.V.; Garcia, R.M.; Slaughter, D.C.; Mitcham, E.J. Methods to analyze physico-chemical changes during mango ripening: A multivariate approach. Postharvest Biol. Technol. 2011, 62, 267–274. [Google Scholar] [CrossRef]
- Omoba, O.S.; Obafaye, R.O.; Salawu, S.O.; Boligon, A.A.; Athayde, M.L. HPLC-DAD phenolic characterization and antioxidant activities of ripe and unripe sweet orange peels. Antioxidants 2015, 4, 498–512. [Google Scholar] [CrossRef]
- Sabzi, S.; Javadikia, H.; Arribas, J.I. A three-variety automatic and non-intrusive computer vision system for the estimation of orange fruit pH value. Measurement 2020, 152, 107298. [Google Scholar] [CrossRef]
- Meléndez-Martínez, A.J.; Benítez, A.; Corell, M.; Hernanz, D.; Mapelli-Brahm, P.; Stinco, C.; Coyago-Cruz, E. Screening for innovative sources of carotenoids and phenolic antioxidants among flowers. Foods 2021, 10, 2625. [Google Scholar] [CrossRef]
- Wagare, D.S.; Shirsath, S.E.; Shaikh, M.; Netankar, P. Sustainable solvents in chemical synthesis: A review. Environ. Chem. Lett. 2021, 19, 3263–3282. [Google Scholar] [CrossRef]
- Jaywant, S.A.; Singh, H.; Arif, K.M. Sensors and instruments for brix measurement: A review. Sensors 2022, 22, 2290. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Jin, G.; Jiang, X.; Yi, S.; Tian, X. Non-destructive determination of soluble solids content using a multi-region combination model in hybrid citrus. Infrared Phys. Technol. 2020, 104, 103138. [Google Scholar] [CrossRef]
- Akbar, J.U.M.; Kamarulzaman, S.F.; Muzahid, A.J.M.; Rahman, M.A.; Uddin, M. A comprehensive review on deep learning assisted computer vision techniques for smart greenhouse agriculture. IEEE Access 2024, 12, 4485–4522. [Google Scholar] [CrossRef]
- López-García, F.; Andreu-García, G.; Blasco, J.; Aleixos, N.; Valiente, J.M. Automatic detection of skin defects in citrus fruits using a multivariate image analysis approach. Comput. Electron. Agric. 2010, 71, 189–197. [Google Scholar] [CrossRef]
- Wu, D.; Sun, D.W. Colour measurements by computer vision for food quality control—A review. Trends Food Sci. Technol. 2013, 29, 5–20. [Google Scholar] [CrossRef]
- Li, P.; Li, S.; Du, G.; Jiang, L.; Liu, X.; Ding, S.; Shan, Y. A simple and nondestructive approach for the analysis of soluble solid content in citrus by using portable visible to near-infrared spectroscopy. Food Sci. Nutr. 2020, 8, 2543–2552. [Google Scholar] [CrossRef] [PubMed]
- Cavallo, D.P.; Cefola, M.; Pace, B.; Logrieco, A.F.; Attolico, G. Non-destructive and contactless quality evaluation of table grapes by a computer vision system. Comput. Electron. Agric. 2019, 156, 558–564. [Google Scholar] [CrossRef]
- Cubero, S.; Lee, W.S.; Aleixos, N.; Albert, F.; Blasco, J. Automated systems based on machine vision for inspecting citrus fruits from the field to postharvest—A review. Food Bioprocess Technol. 2016, 9, 1623–1639. [Google Scholar] [CrossRef]
- Nandi, C.S.; Tudu, B.; Koley, C. A machine vision-based maturity prediction system for sorting of harvested mangoes. IEEE Trans. Instrum. Meas. 2014, 63, 1722–1730. [Google Scholar] [CrossRef]
- Alfatni, M.S.M.; Khairunniza-Bejo, S.; Marhaban, M.H.B.; Saaed, O.M.B.; Mustapha, A.; Shariff, A.R.M. Towards a real-time oil palm fruit maturity system using supervised classifiers based on feature analysis. Agriculture 2022, 12, 1461. [Google Scholar] [CrossRef]
- Saragih, R.E.; Emanuel, A.W. Banana ripeness classification based on deep learning using convolutional neural network. In Proceedings of the 2021 3rd East Indonesia Conference on Computer and Information Technology (EIConCIT), Surabaya, Indonesia, 9–11 April 2021; pp. 85–89. [Google Scholar]
- Sajjan, M.; Kulkarni, L.; Anami, B.; Gaddagimath, N. A comparative analysis of color features for classification of bulk chilli. In Proceedings of the 2016 2nd International conference on contemporary computing and informatics (IC3I), Greater Noida, India, 14–17 December 2016; pp. 427–432. [Google Scholar]
- Villaseñor-Aguilar, M.J.; Bravo-Sánchez, M.G.; Padilla-Medina, J.A.; Vázquez-Vera, J.L.; Guevara-González, R.G.; García-Rodríguez, F.J.; Barranco-Gutiérrez, A.I. A maturity estimation of bell pepper (Capsicum annuum L.) by artificial vision system for quality control. Appl. Sci. 2020, 10, 5097. [Google Scholar] [CrossRef]
- Pardede, J.; Husada, M.G.; Hermana, A.N.; Rumapea, S.A. Fruit ripeness based on RGB, HSV, HSL, L* a* b* color feature using SVM. In Proceedings of the 2019 International Conference of Computer Science and Information Technology (ICoSNIKOM), Medan, Indonesia, 28–29 November 2019; pp. 1–5. [Google Scholar]
- De-la Torre, M.; Zatarain, O.; Avila-George, H.; Muñoz, M.; Oblitas, J.; Lozada, R.; Mejía, J.; Castro, W. Multivariate analysis and machine learning for ripeness classification of cape gooseberry fruits. Processes 2019, 7, 928. [Google Scholar] [CrossRef]
- Little, A.C. A research note off on a tangent. J. Food Sci. 1975, 40, 410–411. [Google Scholar] [CrossRef]
- Jiménez-Cuesta, M.; Cuquerella, J.; Martínez-Jávega, J. Determination of a color index for citrus fruit degreening. In Proceedings of the International Society of Citriculture, Tokyo, Japan, 9–12 November 1983; Volume 2, pp. 750–753. [Google Scholar]
- Carreño, J.; Martínez, A.; Almela, L.; Fernández-López, J. Proposal of an index for the objective evaluation of the colour of red table grapes. Food Res. Int. 1995, 28, 373–377. [Google Scholar] [CrossRef]
- Olmo, M.; Nadas, A.; García, J. Nondestructive methods to evaluate maturity level of oranges. J. Food Sci. 2000, 65, 365–369. [Google Scholar] [CrossRef]
- Lado, J.; Gambetta, G.; Zacarias, L. Key determinants of citrus fruit quality: Metabolites and main changes during maturation. Sci. Hortic. 2018, 233, 238–248. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, Y.; Kan, C.; Chen, M.; Chen, J. Changes of peel color and fruit quality in navel orange fruits under different storage methods. Sci. Hortic. 2019, 256, 108522. [Google Scholar] [CrossRef]
- Ghanghas, S.; Kumar, N.; Kumar, S.; Singh, V.K. Advancement in Measurement and AI-Driven Predictions of Maturity Indices in Kinnow (Citrus nobilis x Citrus deliciosa): A Comprehensive Review. Food Phys. 2024, 2, 100026. [Google Scholar] [CrossRef]
- He, K.; Sun, J.; Tang, X. Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 33, 2341–2353. [Google Scholar] [CrossRef] [PubMed]
- Park, D.; Park, H.; Han, D.K.; Ko, H. Single image dehazing with image entropy and information fidelity. In Proceedings of the 2014 IEEE International Conference on Image Processing (ICIP), Paris, France, 27–30 October 2014; pp. 4037–4041. [Google Scholar]
- Zhang, S.; Zhang, X.; Wan, S.; Ren, W.; Zhao, L.; Shen, L. Generative adversarial and self-supervised dehazing network. IEEE Trans. Ind. Inform. 2023, 20, 4187–4197. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, X.; Hu, E.; Wang, A.; Shiri, B.; Lin, W. VNDHR: Variational single nighttime image Dehazing for enhancing visibility in intelligent transportation systems via hybrid regularization. IEEE Trans. Intell. Transp. Syst. 2025, 26, 10189–10203. [Google Scholar] [CrossRef]
- Petrou, Z.I.; Manakos, I.; Stathaki, T.; Mücher, C.A.; Adamo, M. Discrimination of vegetation height categories with passive satellite sensor imagery using texture analysis. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 1442–1455. [Google Scholar] [CrossRef]
- Humeau-Heurtier, A. Texture feature extraction methods: A survey. IEEE Access 2019, 7, 8975–9000. [Google Scholar] [CrossRef]
- Bakar, M.A.A.; Zulkifli, Z.; Mohamad, M.; Ahmad, S. GLCM-Based Feature Extraction and CNN Approach for Fruit Freshness Detection. In Proceedings of the 2024 5th International Conference on Artificial Intelligence and Data Sciences (AiDAS), Bangkok, Thailand, 3–4 September 2024; pp. 1–6. [Google Scholar]
- Al Riza, D.F.; Ikrom, A.M.; Tulsi, A.A.; Darmanto; Hendrawan, Y. Mandarin orange (Citrus reticulata Blanco cv. Batu 55) ripeness parameters prediction using combined reflectance-fluorescence images and deep convolutional neural network (DCNN) regression model. Sci. Hortic. 2024, 331, 113089. [Google Scholar] [CrossRef]
- Patel, H.; Prajapati, R.; Patel, M. Detection of quality in orange fruit image using SVM classifier. In Proceedings of the 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI), Tirunelveli, India, 23–25 April 2019; pp. 74–78. [Google Scholar]
- Carolina, C.P.D.; David, N.T.D. Classification of oranges by maturity, using image processing techniques. In Proceedings of the 2014 III International Congress of Engineering Mechatronics and Automation (CIIMA), Cartagena, Colombia, 22–24 October 2014; pp. 1–5. [Google Scholar]
- Buragohain, M.; Mahanta, C. A novel approach for ANFIS modelling based on full factorial design. Appl. Soft Comput. 2008, 8, 609–625. [Google Scholar] [CrossRef]
- Arkhipov, M.; Krueger, E.; Kurtener, D. Evaluation of ecological conditions using bioindicators: Application of fuzzy modeling. In Proceedings of the International Conference on Computational Science and Its Applications, Perugia, Italy, 30 June–3 July 2008; Springer: Berlin/Heidelberg, Germany, 2008; pp. 491–500. [Google Scholar]
- Cheng, C.B.; Cheng, C.J.; Lee, E. Neuro-fuzzy and genetic algorithm in multiple response optimization. Comput. Math. Appl. 2002, 44, 1503–1514. [Google Scholar] [CrossRef]
- Kaur, S.; Randhawa, S.; Malhi, A. An efficient ANFIS based pre-harvest ripeness estimation technique for fruits. Multimed. Tools Appl. 2021, 80, 19459–19489. [Google Scholar] [CrossRef]
- Villaseñor-Aguilar, M.J.; Cano-Lara, M.; Lopez, A.R.; Rostro-Gonzalez, H.; Padilla-Medina, J.A.; Barranco-Gutiérrez, A.I. Fuzzy Classification of the Maturity of the Orange (Citrus× sinensis) Using the Citrus Color Index (CCI). Appl. Sci. 2024, 14, 5953. [Google Scholar] [CrossRef]
- Castro, W.; Oblitas, J.; De-La-Torre, M.; Cotrina, C.; Bazán, K.; Avila-George, H. Classification of cape gooseberry fruit according to its level of ripeness using machine learning techniques and different color spaces. IEEE Access 2019, 7, 27389–27400. [Google Scholar] [CrossRef]
- Chen, T.; Ma, K.K.; Chen, L.H. Tri-state median filter for image denoising. IEEE Trans. Image Process. 1999, 8, 1834–1838. [Google Scholar] [CrossRef]
- Shi, Z.; Li, Y.; Zhang, C.; Zhao, M.; Feng, Y.; Jiang, B. Weighted median guided filtering method for single image rain removal. EURASIP J. Image Video Process. 2018, 2018, 1–8. [Google Scholar] [CrossRef]
- Ding, X.; Zhang, X.; Han, J.; Ding, G. Scaling up your kernels to 31 × 31: Revisiting large kernel design in cnns. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 11963–11975. [Google Scholar]
- Chansong, D.; Supratid, S. Impacts of kernel size on different resized images in object recognition based on convolutional neural network. In Proceedings of the 2021 9th International Electrical Engineering Congress (iEECON), Pattaya, Thailand, 10–12 March 2021; pp. 448–451. [Google Scholar]
- Tho, T.P.; Thinh, N.T. Using ANFIS to predict picking position of the fruits sorting system. In Proceedings of the 2017 International Conference on System Science and Engineering (ICSSE), Ho Chi Minh City, Vietnam, 21–23 July 2017; pp. 297–304. [Google Scholar]
- Zheng, H.; Jiang, B.; Lu, H. An adaptive neural-fuzzy inference system (ANFIS) for detection of bruises on Chinese bayberry (Myrica rubra) based on fractal dimension and RGB intensity color. J. Food Eng. 2011, 104, 663–667. [Google Scholar] [CrossRef]
FFA-Net [49] | VNDHR [49] | GASSDN [48] | ZID [49] | IMRH [46] |
---|---|---|---|---|
Method | e | SSIM | PSNR | ||
---|---|---|---|---|---|
FFA [49] | 0.4346 | −0.0254 | −0.1456 | 0.0983 | 6.86 |
VNDHR [49] | 0.0120 | −0.0155 | −0.0210 | 0.9527 | 33.63 |
GASSDN [48] | 0.0115 | −0.0157 | −0.0211 | 0.9564 | 33.71 |
ZID [49] | 0.0467 | −0.0272 | −0.0317 | 0.6061 | 23.62 |
IMRH [46] | 0.0375 | −0.0200 | −0.0482 | 0.6958 | 24.65 |
Sub-Regions of Interest (ROI) | Class 1 | Class 2 | Class 3 | Class 4 |
---|---|---|---|---|
Image | ||||
3 × 3 | −3.2585 | 0.4066 | 2.6001 | 3.3954 |
5 × 5 | −3.3000 | 0.4616 | 2.6348 | 3.3756 |
11 × 11 | −3.3259 | 0.5343 | 2.6925 | 3.3232 |
21 × 21 | −3.2265 | 0.6100 | 2.7577 | 3.2112 |
Mean | −3.2777 | 0.5031 | 2.6712 | 3.3263 |
Maturity Class | Contrast | Correlation | Energy | Homogeneity |
---|---|---|---|---|
Class 1 | 0.1066 | 0.9443 | 0.2548 | 0.9494 |
Class 2 | 0.1236 | 0.9414 | 0.2355 | 0.9412 |
Class 3 | 0.1200 | 0.9221 | 0.2474 | 0.9416 |
Class 4 | 0.0929 | 0.9407 | 0.2635 | 0.9545 |
ANFIS | Texture | Output | RMSE | MAE | |
---|---|---|---|---|---|
1 | Contrast | Maturity | 0.8769 | 0.3770 | 0.0803 |
2 | Correlation | Maturity | 0.7805 | 0.5034 | 0.0955 |
3 | Energy | Maturity | 0.7297 | 0.5586 | 0.2674 |
4 | Homogeneity | Maturity | 0.7806 | 0.5033 | 0.0945 |
5 | Contrast | Degree Brix | 0.8786 | 0.8603 | 0.3170 |
6 | Correlation | Degree Brix | 0.7426 | 1.2526 | 0.2564 |
7 | Energy | Degree Brix | 0.7779 | 1.1636 | 0.4812 |
8 | Homogeneity | Degree Brix | 0.8137 | 1.0657 | 0.1939 |
9 | Contrast | Firmness | 0.6226 | 0.7875 | 0.2207 |
10 | Correlation | Firmness | 0.6089 | 0.8017 | 0.1891 |
11 | Energy | Firmness | 0.6928 | 0.7105 | 0.4006 |
12 | Homogeneity | Firmness | 0.6277 | 0.7822 | 0.1686 |
Variable | Normality | Homogeneity | Test Applied | p-Value |
---|---|---|---|---|
Contrast | Yes | No | Welch ANOVA | <0.001 |
Correlation | Yes | No | Welch ANOVA | <0.001 |
Energy | No | – | Kruskal–Wallis | <0.001 |
Homogeneity | No | – | Kruskal–Wallis | <0.001 |
Brix Degrees | No | – | Kruskal–Wallis | Not valid |
Firmness | Yes | No | Welch ANOVA | <0.001 |
L* | No | – | Kruskal–Wallis | Not valid |
a* | No | – | Kruskal–Wallis | Not valid |
b* | Yes | No | Welch ANOVA | <0.001 |
Model | Technique | Input | Output | RMSE | |
---|---|---|---|---|---|
ANFIS 2 | ANFIS | CCI-GTF (Correlation) | Maturity | 0.7805 | 0.5034 |
ANFIS 4 | ANFIS | CCI-GTF (Homogeneity) | Maturity | 0.7806 | 0.5033 |
ANFIS 6 | ANFIS | CCI-GTF (Correlation) | ° Brix | 0.7426 | 1.2526 |
ANFIS 8 | ANFIS | CCI-GTF (Homogeneity) | ° Brix | 0.8137 | 1.0657 |
ANFIS 10 | ANFIS | CCI-GTF (Correlation) | Firmness | 0.6089 | 0.8017 |
ANFIS 12 | ANFIS | CCI-GTF (Homogeneity) | Firmness | 0.6277 | 0.7822 |
Villaseñor-Aguilar et al. (2024) [60] | Fuzzy | FRL-CCI | Maturity | 0.98 | 0.01 |
° Brix | 0.98 | 0.082 | |||
Firmness | 0.95 | 1.456 | |||
Al Riza et al. (2024) [53] | DCNN | Spectral reflectance images (400–1000 nm) Spectral fluorescence images (565–796 nm) LED excitation: blue, green, red | Acidity ° Brix/ Acid Ratio ° Brix Firmness | 0.83 0.94 0.86 0.91 | – – – – |
Villaseñor-Aguilar et al. (2020) [36] | ANN Fuzzy | GAROI | Maturity | 1.00 | 0.00 |
YAROI | ° Brix | 0.6327 | 0.3888 | ||
OAROI | Maturity | 0.88 | – | ||
RAROI | ° Brix | 0.891 | 0.484 | ||
Li et al. (2020) [25] | SNV- VABPLS | Spectra | TSS | 0.82 | 0.2445 |
Li et al. (2020) [29] | Multi-region models | Spectra | TSS | 0.8687 | 0.3445 |
Olmo et al. (2000) [42] | Linear regression | Weight loss | Firmness | 0.95 | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Granados-Lieberman, D.; Barranco-Gutiérrez, A.I.; Lopez, A.R.; Rostro-Gonzalez, H.; Cano-Lara, M.; Manriquez-Padilla, C.G.; Villaseñor-Aguilar, M.J. Non-Destructive Classification of Sweetness and Firmness in Oranges Using ANFIS and a Novel CCI–GLCM Image Descriptor. Appl. Sci. 2025, 15, 10464. https://doi.org/10.3390/app151910464
Granados-Lieberman D, Barranco-Gutiérrez AI, Lopez AR, Rostro-Gonzalez H, Cano-Lara M, Manriquez-Padilla CG, Villaseñor-Aguilar MJ. Non-Destructive Classification of Sweetness and Firmness in Oranges Using ANFIS and a Novel CCI–GLCM Image Descriptor. Applied Sciences. 2025; 15(19):10464. https://doi.org/10.3390/app151910464
Chicago/Turabian StyleGranados-Lieberman, David, Alejandro Israel Barranco-Gutiérrez, Adolfo R. Lopez, Horacio Rostro-Gonzalez, Miroslava Cano-Lara, Carlos Gustavo Manriquez-Padilla, and Marcos J. Villaseñor-Aguilar. 2025. "Non-Destructive Classification of Sweetness and Firmness in Oranges Using ANFIS and a Novel CCI–GLCM Image Descriptor" Applied Sciences 15, no. 19: 10464. https://doi.org/10.3390/app151910464
APA StyleGranados-Lieberman, D., Barranco-Gutiérrez, A. I., Lopez, A. R., Rostro-Gonzalez, H., Cano-Lara, M., Manriquez-Padilla, C. G., & Villaseñor-Aguilar, M. J. (2025). Non-Destructive Classification of Sweetness and Firmness in Oranges Using ANFIS and a Novel CCI–GLCM Image Descriptor. Applied Sciences, 15(19), 10464. https://doi.org/10.3390/app151910464