Towards Microbiome-Driven Management of SUDD: Pilot Data on Combined Probiotic–Butyrate Intervention
Abstract
Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
Study Plan Description
2.2. Study Population
2.2.1. Inclusion Criteria
- Age 40–75 years;
- Endoscopic confirmation of diverticular disease;
- Episode of diverticulitis (left lower quadrant pain, fever, leukocytosis, antibiotic treatment) within the last 6 months;
- Presence of typical SUDD symptoms: abdominal pain, flatulence, and disturbed bowel movements;
- Stable background treatment with rifaximin (cyclically), antispasmodics (anticholinergics), painkillers, fiber, or mesalasine.
2.2.2. Exclusion Criteria
- Any acute, uncontrolled disease;
- Chronic diseases not treated or not stable on treatment;
- Presence of inflammatory bowel diseases during exacerbation phase;
- Any treatment during last 12 months for severe, progressive, uncontrolled cardiological, pulmonary, nephrology, contagious, or psychiatric illness that could increase subject’s risk due to participation in the study;
- Present or suspected malignancy or previous oncological treatment in the last 5 years;
- Clinically significant cardiac arrhythmias observed in ECG examination or reported in history for the last 12 months;
- Any symptoms of COVID-19 infection;
- History of major colorectal surgery or severe trauma of rectum;
- Positive pregnancy test.
2.3. Assessment Parameters and Observational Objectives
2.3.1. Primary Objective:
2.3.2. Secondary Objectives:
- Symptom changes at Visit 4 (3 weeks post treatment).
- Occurrence of diverticulitis recurrence at Visit 4.
- Change in patient-reported quality of life post intervention (Visit 3) and after washout (Visit 4).
- Detection of colonisation by at least one administered strain (L. rhamnosus, L. plantarum, L. reuteri or B. infantis) in SST2 (Visit 3).
- Microbiota composition changes (SST2 vs. SST1 and SST3 vs. SST1), including aerobe/anaerobe ratio.
2.3.3. Exploratory Objectives:
- Correlation between Wexner incontinence score and treatment.
- Correlation between symptom changes and microbiota profile (16S rRNA).
- Patient-specific correlation of microbiota changes, symptom improvement, and quality of life—toward future personalized interventions.
- Link between baseline microbiota and colonisation efficacy.
2.4. Quality of Life Assessment
2.5. Microbiome Analysis
- –
- SST1 (baseline, Visit 1);
- –
- SST2 (end of supplementation, Visit 3);
- –
- SST3 (post washout, Visit 4).
2.6. Probiotic Strain Colonisation
2.7. Statistical Analysis
2.8. Data and Material Availability
3. Results
3.1. Patients’ Characteristics
3.2. Clinical Symptoms Assessment Based on Patient Diary
3.3. Quality of Life (SF-36)
3.4. Microbiome Profiling
3.4.1. Relative Abundance and Microbiota Stability at Population Level
3.4.2. Intestinal Colonisation by Probiotic Strains
3.4.3. Association Between Microbiota and Clinical Symptoms
3.4.4. Correlation Between Microbiota Changes, Symptoms, and Quality of Life
3.4.5. Colonisation and Baseline Microbiota Composition
3.5. Safety Evaluation
3.5.1. Adverse Events
3.5.2. Blood Test
3.5.3. Inflammatory Markers
4. Discussion
4.1. A Synergistic, Multi-Targeted Approach to SUDD
4.2. Gut Microbiota Modulation and Combined Therapeutic Strategy
4.3. Colonisation Capacity
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SUDD | Symptomatic Uncomplicated Diverticular Disease |
PCR | Polymerase Chain Reaction |
SST | Stool Sample Timepoint |
SCAD | Segmental Colitis Associated with Diverticulosis |
ECG | Electrocardiogram |
ASV | Amplicon Sequence Variant |
AE | Adverse Event |
SAE | Serious Adverse Event |
CE | Clinical Evaluation |
CRP | C-Reactive Protein |
VAS | Visual Analogue Scale |
QoL | Quality of Life |
IBS | Irritable Bowel Syndrome |
References
- Krogsgaard, L.R.; Lyngesen, M.; Bytzer, P. Systematic review: Quality of trials on the symptomatic effects of the low FODMAP diet for irritable bowel syndrome. Aliment. Pharmacol. Ther. 2017, 45, 1506–1513. [Google Scholar] [CrossRef] [PubMed]
- Peery, A.F.; Keku, T.O.; Galanko, J.A.; Sandler, R.S. Colonic diverticulosis is not associated with painful abdominal symptoms in a US population. Gastro Hep Adv. 2022, 1, 659–665. [Google Scholar] [CrossRef] [PubMed]
- Violi, A.; Cambiè, G.; Miraglia, C.; Barchi, A.; Nouvenne, A.; Capasso, M.; Leandro, G.; Meschi, T.; de’ Angelis, G.L.; Di Mario, F. Epidemiology and Risk Factors for Diverticular Disease. Acta Bio Medica Atenei Parm. 2018, 89, 107–112. [Google Scholar] [CrossRef]
- Comparato, G.; Fanigliulo, L.; Aragona, G.; Cavestro, G.M.; Cavallaro, L.G.; Leandro, G.; Pilotto, A.; Nervi, G.; Soliani, P.; Sianesi, M.; et al. Quality of Life in Uncomplicated Symptomatic Diverticular Disease: Is It Another Good Reason for Treatment? Dig. Dis. 2007, 25, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Spiegel, B.M.; Reid, M.W.; Bolus, R.; Whitman, C.B.; Talley, J.; Dea, S.; Shahedi, K.; Karsan, H.; Teal, C.; Melmed, G.Y.; et al. Development and validation of a disease-targeted quality of life instrument for chronic diverticular disease: The DV-QOL. Qual. Life Res. 2015, 24, 163–179. [Google Scholar] [CrossRef]
- Tursi, A.; Scarpignato, C.; Strate, L.L.; Lanas, A.; Kruis, W.; Lahat, A.; Danese, S. Colonic diverticular disease. Nat. Rev. Dis. Primers 2020, 6, 20. [Google Scholar] [CrossRef]
- Barbara, G.; Scaioli, E.; Barbaro, M.R.; Biagi, E.; Laghi, L.; Cremon, C.; Marasco, G.; Colecchia, A.; Picone, G.; Salfi, N.; et al. Gut Microbiota, Metabolome and Immune Signatures in Patients with Uncomplicated Diverticular Disease. Gut 2017, 66, 1252–1261. [Google Scholar] [CrossRef]
- Maccaferri, S.; Candela, M.; Turroni, S.; Centanni, M.; Severgnini, M.; Consolandi, C.; Cavina, P.; Brigidi, P. IBS-Associated Phylogenetic Unbalances of the Intestinal Microbiota Are Not Reverted by Probiotic Supplementation. Gut Microbes 2012, 3, 406–413. [Google Scholar] [CrossRef]
- Tursi, A.; Mastromarino, P.; Capobianco, D.; Elisei, W.; Miccheli, A.; Capuani, G.; Tomassini, A.; Campagna, G.; Picchio, M.; Giorgetti, G.; et al. Assessment of Fecal Microbiota and Fecal Metabolome in Symptomatic Uncomplicated Diverticular Disease of the Colon. J. Clin. Gastroenterol. 2016, 50, S9–S12. [Google Scholar] [CrossRef]
- Linninge, C.; Roth, B.; Erlanson-Albertsson, C.; Molin, G.; Toth, E.; Ohlsson, B. Abundance of Enterobacteriaceae in the Colon Mucosa in Diverticular Disease. World J. Gastrointest. Pathophysiol. 2018, 9, 18–27. [Google Scholar] [CrossRef]
- Gueimonde, M. Qualitative and Quantitative Analyses of the Bifidobacterial Microbiota in the Colonic Mucosa of Patients with Colorectal Cancer, Diverticulitis and Inflammatory Bowel Disease. World J. Gastroenterol. 2007, 13, 3985. [Google Scholar] [CrossRef]
- Daniels, L.; Budding, A.E.; de Korte, N.; Eck, A.; Bogaards, J.A.; Stockmann, H.B.; Consten, E.C.; Savelkoul, P.H.; Boermeester, M.A. Fecal Microbiome Analysis as a Diagnostic Test for Diverticulitis. Eur. J. Clin. Microbiol. Infect. Dis. 2014, 33, 1927–1936. [Google Scholar] [CrossRef]
- Schieffer, K.M.; Sabey, K.; Wright, J.R.; Toole, D.R.; Drucker, R.; Tokarev, V.; Harris, L.R.; Deiling, S.; Eshelman, M.A.; Hegarty, J.P.; et al. The Microbial Ecosystem Distinguishes Chronically Diseased Tissue from Adjacent Tissue in the Sigmoid Colon of Chronic, Recurrent Diverticulitis Patients. Sci. Rep. 2017, 7, 8467. [Google Scholar] [CrossRef]
- Kvasnovsky, C.L.; Leong, L.E.X.; Choo, J.M.; Abell, G.C.J.; Papagrigoriadis, S.; Bruce, K.D.; Rogers, G.B. Clinical and Symptom Scores Are Significantly Correlated with Fecal Microbiota Features in Patients with Symptomatic Uncomplicated Diverticular Disease: A Pilot Study. Eur. J. Gastroenterol. Hepatol. 2018, 30, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Hullar, M.A.J.; Sandstrom, R.S.; Stamatoyannopoulos, J.A.; Lampe, J.W.; Strate, L.L. The Fecal Microbiome in Diverticulitis and Asymptomatic Diverticulosis: A Case-Control Study in the US. medRxiv 2019. [Google Scholar] [CrossRef]
- Tursi, A.; Brandimarte, G.; Di Mario, F.; Lanas, A.; Scarpignato, C.; Bafutto, M.; Walker, M. International consensus on diverticulosis and diverticular disease. Statements from the 3rd international symposium on diverticular disease. J. Gastrointest. Liver Dis. 2019, 28, 57–66. [Google Scholar] [CrossRef]
- Hall, J.; Hardiman, K.; Lee, S.; Lightner, A.; Stocchi, L.; Paquette, I.M.; Feingold, D.L. The American Society of Colon and Rectal Surgeons clinical practice guidelines for the treatment of left-sided colonic diverticulitis. Dis. Colon Rectum 2020, 63, 728–747. [Google Scholar] [CrossRef]
- Cuomo, R.; Barbara, G.; Pace, F.; Annese, V.; Bassotti, G.; Binda, G.A.; Annibale, B. Italian consensus conference for colonic diverticulosis and diverticular disease. United Eur. Gastroenterol. J. 2014, 2, 413–442. [Google Scholar] [CrossRef] [PubMed]
- Lahner, E.; Bellisario, C.; Hassan, C.; Zullo, A.; Esposito, G.; Annibale, B. Probiotics in the Treatment of Diverticular Disease. A Systematic Review. J. Gastrointest. Liver Dis. 2016, 25, 79–86. [Google Scholar] [CrossRef]
- Binda, G.A.; Cuomo, R.; Laghi, A.; Nascimbeni, R.; Serventi, A.; Bellini, D.; Gervaz, P.; Annibale, B. Practice parameters for the treatment of colonic diverticular disease: Italian Society of Colon and Rectal Surgery (SICCR) guidelines. Tech. Coloproctology 2015, 19, 615–626. [Google Scholar] [CrossRef]
- Calini, G.; Abd El Aziz, M.A.; Paolini, L.; Abdalla, S.; Rottoli, M.; Mari, G.; Larson, D.W. Symptomatic uncomplicated diverticular disease (SUDD): Practical guidance and challenges for clinical management. Clin. Exp. Gastroenterol. 2023, 16, 29–43. [Google Scholar] [CrossRef]
- Tan, J.; McKenzie, C.; Potamitis, M.; Thorburn, A.N.; Mackay, C.R.; Macia, L. The Role of Short-Chain Fatty Acids in Health and Disease. Adv. Immunol. 2014, 121, 91–119. [Google Scholar] [CrossRef] [PubMed]
- Dalile, B.; Van Oudenhove, L.; Vervliet, B.; Verbeke, K. The role of short-chain fatty acids in microbiota-gut-brain communication. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 461–478. [Google Scholar] [CrossRef]
- Hodgkinson, K.; El Abbar, F.; Dobranowski, P.; Manoogian, J.; Butcher, J.; Figeys, D.; Mack, D.; Stintzi, A. Butyrate’s role in human health and the current progress towards its clinical application to treat gastrointestinal disease. Clin. Nutr. 2023, 42, 61–75. [Google Scholar] [CrossRef]
- Deleu, S.; Machiels, K.; Raes, J.; Verbeke, K.; Vermeire, S. Short chain fatty acids and its producing organisms: An overlooked therapy for IBD? eBioMedicine 2021, 66, 103293. [Google Scholar] [CrossRef]
- Facchin, S.; Vitulo, N.; Calgaro, M.; Buda, A.; Romualdi, C.; Pohl, D.; Perini, B.; Lorenzon, G.; Marinelli, C.; D’Incà, R.; et al. Microbiota changes induced by microencapsulated sodium butyrate in patients with inflammatory bowel disease. Neurogastroenterol. Motil. 2020, 32, e13914. [Google Scholar] [CrossRef]
- Banasiewicz, T. Badanie porównujące profil uwalniania się w jelicie aktualnie dostępnych na rynku polskim produktów zawierających maślan sodu. Med. Faktów 2017, 4, 37. [Google Scholar]
- Kaehler, B.D.; Bokulich, N.A.; Caporaso, J.G.; Huttley, G.A. Species-level microbial sequence classification is improved by source-environment information. bioRxiv 2018. [Google Scholar] [CrossRef]
- Bokulich, N.A.; Kaehler, B.D.; Rideout, J.R.; Dillon, M.; Bolyen, E.; Knight, R.; Huttley, G.A.; Gregory Caporaso, J. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 2018, 6, 90. [Google Scholar] [CrossRef] [PubMed]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2012, 41, D590–D596. [Google Scholar] [CrossRef] [PubMed]
- Robeson, M.S.; O’Rourke, D.R.; Kaehler, B.D.; Ziemski, M.; Dillon, M.R.; Foster, J.T.; Bokulich, N.A. RESCRIPt: Reproducible sequence taxonomy reference database management. PLOS Comput. Biol. 2021, 17, e1009581. [Google Scholar] [CrossRef]
- Prjibelski, A.; Antipov, D.; Meleshko, D.; Lapidus, A.; Korobeynikov, A. Using SPAdes de novo assembler. Curr. Prot. Bioinf. 2020, 70, e102. [Google Scholar] [CrossRef] [PubMed]
- Kvasnovsky, C.L.; Bjarnason, I.; Donaldson, A.N.; Sherwood, R.A.; Papagrigoriadis, S. A randomized double-blind placebo-controlled trial of a multi-strain probiotic in treatment of symptomatic uncomplicated diverticular disease. Inflammopharmacology 2017, 25, 499–509. [Google Scholar] [CrossRef] [PubMed]
- Tursi, A.; Brandimarte, G.; Giorgetti, G.M.; Elisei, W. Mesalazine and/or Lactobacillus casei in preventing recurrence of symptomatic uncomplicated diverticular disease of the colon: A prospective, randomized, open-label study. J. Clin. Gastroenterol. 2006, 40, 312–316. [Google Scholar] [CrossRef]
- Lahner, E. High-Fibre Diet and Lactobacillus Paracasei B21060 in Symptomatic Uncomplicated Diverticular Disease. World J. Gastroenterol. 2012, 18, 5918. [Google Scholar] [CrossRef]
- Annibale, B.; Maconi, G.; Lahner, E.; De Giorgi, F.; Cuomo, R. Efficacy of Lactobacillus Paracasei Sub. Paracasei F19 on Abdominal Symptoms in Patients with Symptomatic Uncomplicated Diverticular Disease: A Pilot Study. Minerva Gastroenterol. Dietol. 2011, 57, 13–22. [Google Scholar] [PubMed]
- Ojetti, V.; Saviano, A.; Brigida, M.; Petruzziello, C.; Caronna, M.; Gayani, G.; Franceschi, F. Randomized control trial on the efficacy of Limosilactobacillus reuteri ATCC PTA 4659 in reducing inflammatory markers in acute uncomplicated diverticulitis. Eur. J. Gastroenterol. Hepatol. 2022, 34, 496–502. [Google Scholar] [CrossRef]
- Krokowicz, L.; Stojcev, Z.; Kaczmarek, B.F.; Kociemba, W.; Kaczmarek, E.; Walkowiak, J.; Krokowicz, P.; Drews, M.; Banasiewicz, T. Microencapsulated Sodium Butyrate Administered to Patients with Diverticulosis Decreases Incidence of Diverticulitis—A Prospective Randomized Study. Int. J. Colorectal Dis. 2014, 29, 387–393. [Google Scholar] [CrossRef]
- Tursi, A.; Procaccianti, G.; De Bastiani, R.; Turroni, S.; D’Amico, F.; Allegretta, L.; Antonino, N.; Baldi, E.; Casamassima, C.; Casella, G.; et al. Micro-encapsulated and colonic-release sodium butyrate modulates gut microbiota and improves abdominal pain in patients with symptomatic uncomplicated diverticular disease. Front. Med. 2025, 12, 1487892. [Google Scholar] [CrossRef]
- Gąsiorowska, A.; Romanowski, M.; Walecka-Kapica, E.; Kaczka, A.; Chojnacki, C.; Padysz, M.; Siedlecka, M.; Banasik, J.; Sobolewska-Włodarczyk, A.; Wiśniewska-Jarosińska, M.; et al. Efficacy and Safety of a Mixture of Microencapsulated Sodium Butyrate, Probiotics, and Short Chain Fructooligosaccharides in Patients with Irritable Bowel Syndrome—A Randomized, Double-Blind, Placebo-Controlled Study. J. Clin. Med. 2025, 14, 6. [Google Scholar] [CrossRef]
- Bolster, L.T.; Papagrigoriadis, S. Diverticular disease has an impact on quality of life—results of a preliminary study. Colorectal Dis. 2003, 5, 320–323. [Google Scholar] [CrossRef] [PubMed]
- Canani, R.B.; Costanzo, M.D.; Leone, L.; Pedata, M.; Meli, R.; Calignano, A. Potential beneficial effects of butyrate in intestinal and extraintestinal diseases. World J. Gastroenterol. 2011, 17, 1519–1528. [Google Scholar] [CrossRef]
- Scarpignato, C.; Barbara, G.; Lanas, A.; Strate, L.L. Management of colonic diverticular disease in the third millennium: Highlights from a symposium held during the United European Gastroenterology Week. Ther. Adv. Gastroenterol. 2018, 11, 1756284818771305. [Google Scholar] [CrossRef] [PubMed]
- Ouwehand, A.C.; Salminen, S.; Isolauri, E. Probiotics: An overview of beneficial effects. Antonie Van Leeuwenhoek 2002, 82, 279–289. [Google Scholar] [CrossRef] [PubMed]
- Geirnaert, A.; Calatayud, M.; Grootaert, C.; Laukens, D.; Devriese, S.; Smagghe, G.; Vos, M.D.; Boon, N.; Wiele, T.V. Butyrate-producing bacteria supplemented in vitro to Crohn’s disease patient microbiota increased butyrate production and enhanced intestinal epithelial barrier integrity. Sci. Rep. 2017, 7, 11450. [Google Scholar] [CrossRef]
- Chen, G.; Ran, X.; Li, B.; Li, Y.; He, D.; Huang, B.; Fu, S.; Liu, J.; Wang, W. Sodium butyrate inhibits inflammation and maintains epithelium barrier integrity in a TNBS-induced inflammatory bowel disease mice model. eBioMedicine 2018, 30, 317–325. [Google Scholar] [CrossRef]
- Lopetuso, L.R.; Petito, V.; Graziani, C.; Schiavoni, E.; Paroni Sterbini, F.; Poscia, A.; Gaetani, E.; Franceschi, F.; Cammarota, G.; Sanguinetti, M.; et al. Gut Microbiota in Health, Diverticular Disease, Irritable Bowel Syndrome, and Inflammatory Bowel Diseases: Time for Microbial Marker of Gastrointestinal Disorders. Dig. Dis. 2018, 36, 56–65. [Google Scholar] [CrossRef]
- van Rossen, T.M.; Ooijevaar, R.E.; Kuyvenhoven, J.P.; Eck, A.; Bril, H.; Buijsman, R.; Boermeester, M.A.; Stockmann, H.B.A.C.; de Korte, N.; Budding, A.E. Microbiota Composition and Mucosal Immunity in Patients with Asymptomatic Diverticulosis and Controls. PLoS ONE 2021, 16, e0256657. [Google Scholar] [CrossRef]
- Tursi, A.; Papa, V.; Lopetuso, L.R.; Settanni, C.R.; Gasbarrini, A.; Papa, A. Microbiota composition in diverticular disease: Implications for therapy. Int. J. Mol. Sci. 2022, 23, 14799. [Google Scholar] [CrossRef]
- Flint, H.J.; Scott, K.P.; Louis, P.; Duncan, S.H. The role of the gut microbiota in nutrition and health. Nat. Rev. Gastroenterol. Hepatol. 2012, 9, 577–589. [Google Scholar] [CrossRef]
- Zmora, N.; Zilberman-Schapira, G.; Suez, J.; Mor, U.; Dori-Bachash, M.; Bashiardes, S.; Elinav, E. Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features. Cell 2018, 174, 1388–1405. [Google Scholar] [CrossRef]
- Maldonado-Gómez, M.X.; Martínez, I.; Bottacini, F.; O’Callaghan, A.; Ventura, M.; van Sinderen, D.; Walter, J. Stable engraftment of Bifidobacterium longum AH1206 in the human gut depends on individualized features of the resident microbiome. Cell Host Microbe 2016, 20, 515–526. [Google Scholar] [CrossRef]
- Tursi, A.; Papa, A. The role of gut microbiota in the pathogenesis of diverticular disease: Where are we now? Genome Med. 2024, 16, 153. [Google Scholar] [CrossRef]
- Lamiki, P.; Tsuchiya, J.; Pathak, S.; Okura, R.; Solimene, U.; Jain, S.; Kawakita, S.; Marotta, F. Probiotics in Diverticular Disease of the Colon: An Open Label Study. J. Gastrointest. Liver Dis. 2010, 19, 31–36. [Google Scholar]
- Tursi, A.; Turroni, S.; De Bastiani, R.; Procaccianti, G.; D’Amico, F.; Allegretta, L.; Picchio, M. Gut microbiota in symptomatic uncomplicated diverticular disease stratifies by severity of abdominal pain. Europ. J. Gastroenterol. Hepatol. 2025, 37, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Zhao, J.; Zhang, H.; Zhai, Q.; Chen, W. Mining Lactobacillus and Bifidobacterium for organisms with long-term gut colonization potential. Clin. Nutr. 2020, 39, 1315–1323. [Google Scholar] [CrossRef]
- Zucko, J.; Starcevic, A.; Diminic, J.; Oros, D.; Mortazavian, A.M.; Putnik, P. Probiotic–friend or foe? Curr. Opin. Food Sci. 2020, 32, 45–49. [Google Scholar] [CrossRef]
- Kumar, K.; Sharma, R. Role of Probiotics in Treatment of Gut-Related Diseases. Prebiotics Probiotics Dis. Regul. Manag. 2022, 1–26. [Google Scholar] [CrossRef]
- Marlicz, W.; Skonieczna-Żydecka, K.; Krynicka, P.; Łoniewski, I.; Rydzewska, G. Probiotics in irritable bowel syndrome—Is the quest for the right strain over? Rapid review of existing guidelines and recommendations. Gastroenterol. Rev. Przegląd Gastroenterol. 2021, 16, 369–382. [Google Scholar] [CrossRef]
- Głąbień, M.; Miłkowski, P.; Kuśnierz, A.; Kusiak, K.; Aleksandrowicz, D.; Wieczorek, O.; KoSndratowicz, A. Sodium Butyrate as Gut Microbiota Modulators: Mechanisms of Action and Potential Clinical Applications-Literature Review and New Perspectives. Qual. Sport 2024, 27, 55233. [Google Scholar] [CrossRef]
Procedure/Assessment | V0 | V1 Day 1 | V2 Day 0–14 After V0 | V3 Day 42 ± 5 Post V1 | V4 Day 21 ± 5 Post V3 |
---|---|---|---|---|---|
Informed consent | X | ||||
Inclusion/exclusion criteria | X | X | |||
Medical history | X | ||||
Diverticular disease history | X | ||||
Diverticular disease symptoms intensity | X | X | X | X | |
Body weight | X | X | X | ||
General physical examination | X | X | X | X | |
Proctological examination (including per rectum and anoscopy) | X | X | X | X | |
Wexner scale | X | X | |||
Quality of life assessment SF-36 | X | X | X | ||
Patient’s Diary checking | X | X | X | ||
Laboratory tests | |||||
Blood tests * | X | X | X | ||
Stool samples for profiling | SST1 | SST2 | SST3 | ||
AE monitoring | X | X | X | X |
Patient No. | Change (P/N/NC) | Rationale | |||||
---|---|---|---|---|---|---|---|
F + B [%] | F/B | Group Whose Expansion Was Limited | Group Which Appeared/Increased | ||||
V1 | V3 | V1 | V3 | ||||
01 | P | 96 | 98 | 2.6 | 0.9 | Firmicutes | Prevotellacaea |
02 | P | 47 | 90 | B = 0 | 3.6 | Escherichia-Shigella | Bacteroidetes |
03 | P | 80 | 92 | 0.8 | 0.5 | Escherichia-Shigella | - |
04 | P | 99 | 95 | 4.0 | 4.0 | Bacilli g: Asteroplasma | Akkermansiieae |
05 | P | 96 | 88 | 1.1 | 2.2 | - | Bifidobacteriaceae |
06 | P | 93 | 94 | 1.5 | 1.4 | - | - |
07 | P | 83 | 92 | 5.6 | 5.1 | - | Lactobacillus |
09 | P | 77 | 90 | 0.9 | 0.8 | Escherichia-Shigella | - |
10 | N | 90 | 94 | 4.8 | 5.7 | Escherichia-Shigella | - |
11 | NC | 91 | 93 | 1.4 | 2.2 | - | - |
12 | P | 96 | 95 | 0.4 | 1.2 | Fusobacterium, Bacteroidaceae | - |
13 | P | 92 | 94 | 1.0 | 1.0 | Escherichia-Shigella | - |
14 | N | 92 | 90 | 2.1 | 3.4 | - | Escherichia-Shigella |
15 | P | 89 | 91 | 2.3 | 2.3 | Enterobacteriaceae | - |
16 | N | 91 | 57 | 2.6 | 0.7 | - | Escherichia-Shigella |
17 | P | 89 | 95 | 0.6 | 2.8 | Bacteroidota | Firmicutes |
18 | P | 90 | 94 | 2.6 | 2.0 | - | - |
19 | N | 90 | 87 | 1.8 | 3.1 | - | - |
20 | NC | 97 | 95 | 1.0 | 2.4 | - | Sutterellaceae |
21 | N | 90 | 87 | 1.4 | 1.5 | - | Enterobacteriaceae |
22 | N | 94 | 91 | 2.3 | 3.4 | - | Enterobacteriaceae |
23 | N | 94 | 95 | 1.0 | 4.0 | - | - |
24 | NC | 94 | 93 | 1.6 | 2.1 | - | - |
Patient No. | Change (P/N/NC) | Rationale | |||||
---|---|---|---|---|---|---|---|
F + B [%] | F/B | Group Whose Expansion was Limited | Group Which Appeared/Increased | ||||
V1 | V4 | V1 | V4 | ||||
01 | P | 96 | 97 | 2.6 | 0.9 | Firmicutes | Prevotelacaea |
02 | P | 47 | 88 | B = 0 | 2.3 | Escherichia-Shigella | Bacteroidetes |
03 | P | 80 | 93 | 0.8 | 0.6 | Escherichia-Shigella | - |
04 | N | 99 | 94 | 4.0 | 5.4 | Bacilli g: Asteroplasma | Akkermansiieae |
05 | NC | 96 | 93 | 1.1 | 2.2 | - | - |
06 | P | 93 | 94 | 1.5 | 1.8 | - | - |
07 | P | 83 | 90 | 5.6 | 3.5 | - | - |
09 | P | 77 | 94 | 0.9 | 1.0 | Escherichia-Shigella | - |
10 | P | 90 | 91 | 4.8 | 3.5 | Bifidobacteriaceae | - |
11 | NC | 91 | 90 | 1.4 | 1.6 | - | - |
12 | N | 96 | 97 | 0.4 | 3.6 | - | Firmicutes |
13 | N | 92 | 92 | 1.0 | 0.8 | - | - |
14 | P | 92 | 95 | 2.1 | 2.8 | Escherichia-Shigella | - |
15 | N | 89 | 89 | 2.3 | 2.3 | - | Enterobacteriaceae |
16 | P | 91 | 67 | 2.6 | 0.9 | Escherichia-Shigella | Akkermansiiaceae |
17 | P | 89 | 94 | 0.6 | 2.8 | - | Firmicutes |
18 | N | 90 | 89 | 2.6 | 4.2 | Bacteroidaceae | Alphaproteobacteria |
19 | N | 90 | 88 | 1.8 | 3.7 | - | Lactobacillaceae, Sutterellaceae |
20 | P | 97 | 95 | 1.0 | 2.3 | Sutterellaceae | - |
21 | N | 90 | 87 | 1.4 | 2.7 | Enterobacteriaceae | - |
22 | P | 94 | 99 | 2.3 | 1.5 | Enterobacteriaceae | - |
23 | P | 94 | 95 | 1.0 | 2.0 | - | - |
24 | NC | 94 | 96 | 1.6 | 1.4 | - | - |
Lacticaseibacillus rhamnosus ATCC53103 | ||||
---|---|---|---|---|
Variable | Uncertain Presence | Presence | Absence | p |
V1 | 13.0% (3) | 26.1% (6) | 60.9% (14) | <0.001 |
V3 | 4.3% (1) | 95.7% (22) | 0.0% (0) | |
V4 | 34.8% (8) | 21.7% (5) | 43.5% (10) | |
Lactiplantibacillus plantarum LMG P-21021 | ||||
V1 | 30.4% (7) | 39.1% (9) | 30.4% (7) | <0.001 |
V3 | 0.0% (0) | 100.0% (23) | 0.0% (0) | |
V4 | 34.8% (8) | 52.2% (12) | 13.0% (3) | |
Limosilactobacillus reuteri DSM 23878 | ||||
V1 | 0.0% (0) | 0.0% (0) | 100.0% (23) | <0.001 |
V3 | 17.4% (4) | 43.5% (10) | 39.1% (9) | |
V4 | 0.0% (0) | 4.3% (1) | 95.7% (22) | |
Bifidobacterium longum ssp. infantis DSM 24687 | ||||
V1 | 17.4% (4) | 8.7% (2) | 73.9% (17) | <0.001 |
V3 | 17.4% (4) | 65.2% (15) | 17.4% (4) | |
V4 | 13.0% (3) | 21.7% (5) | 65.2% (15) |
Visit | Presence/Absence of Probiotic Strains | Initial Patients’ Microbiota Profile Composition | p |
---|---|---|---|
V1 | L. rhanmnosus ATCC 53103 | Streptococcaceae | 0.023 |
V1 | L. rhanmnosus ATCC 53103 | Roseburia | 0.039 |
V4 | L. rhanmnosus ATCC 53103 | Phascolarctobacterium | 0.006 |
V4 | L. rhanmnosus ATCC 53103 | Acidaminococcaceae | 0.006 |
V1 | L. plantarum LMG P-21021 | Veillonellaceae | 0.047 |
V1 | L. plantarum LMG P-21021 | [Ruminococcus]_torques_group | 0.047 |
V3 | L.reuteri DSM 23878 | Clostridia_UCG-014 | 0.046 |
V3 | L.reuteri DSM 23878 | Enterobacteriaceae | 0.016 |
V3 | L.reuteri DSM 23878 | Clostridia_UCG-014 | 0.046 |
V3 | L.reuteri DSM 23878 | Escherichia-Shigella | 0.011 |
V1 | B. infantis DSM 24687 | d__Bacteria;p__Firmicutes;c__Clostridia;o__Lachnospirales;f__Lachnospiraceae; | 0.030 |
V1 | B. infantis DSM 24687 | Acidaminococcaceae | 0.010 |
V1 | B. infantis DSM 24687 | Phascolarctobacterium | 0.016 |
V3 | B. infantis DSM 24687 | Erysipelotrichaceae | 0.021 |
V3 | B. infantis DSM 24687 | UCG-005 | 0.027 |
V3 | B. infantis DSM 24687 | d__Bacteria;p__Firmicutes;c__Clostridia;o__Oscillospirales;f__Ruminococcaceae;g__uncultured | 0.027 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borycka, K.; Kubiak, K.; Sobol, M.; Chodkowska, K.A.; Kiciak, A. Towards Microbiome-Driven Management of SUDD: Pilot Data on Combined Probiotic–Butyrate Intervention. Appl. Sci. 2025, 15, 9942. https://doi.org/10.3390/app15189942
Borycka K, Kubiak K, Sobol M, Chodkowska KA, Kiciak A. Towards Microbiome-Driven Management of SUDD: Pilot Data on Combined Probiotic–Butyrate Intervention. Applied Sciences. 2025; 15(18):9942. https://doi.org/10.3390/app15189942
Chicago/Turabian StyleBorycka, Katarzyna, Katarzyna Kubiak, Maria Sobol, Karolina Aleksandra Chodkowska, and Adam Kiciak. 2025. "Towards Microbiome-Driven Management of SUDD: Pilot Data on Combined Probiotic–Butyrate Intervention" Applied Sciences 15, no. 18: 9942. https://doi.org/10.3390/app15189942
APA StyleBorycka, K., Kubiak, K., Sobol, M., Chodkowska, K. A., & Kiciak, A. (2025). Towards Microbiome-Driven Management of SUDD: Pilot Data on Combined Probiotic–Butyrate Intervention. Applied Sciences, 15(18), 9942. https://doi.org/10.3390/app15189942