Multi-Objective Optimization of PMSM Servo System Control Performance Based on Artificial Neural Network and Genetic Algorithm
Abstract
1. Introduction
2. PMSM Servo System
3. Methodology
3.1. Construction of the Hybrid Model
3.1.1. Mathematical Model
3.1.2. Artificial Neural Network Surrogate Model
3.2. Optimization of PMSM Servo Systems
3.2.1. System Optimization Parameters and Performance Indicators
3.2.2. Multi-Objective Optimization Algorithms
4. Results
4.1. Model Evaluation Results
4.2. Ablation Experiments
4.3. Comparison of Algorithms and Optimal Results
5. Conclusions
- (1)
- A hybrid model for the PMSM servo system that more accurately approximates the actual measured values has been successfully constructed. This model integrates a mathematical model based on transfer functions and an ANN surrogate model used to fit the discrepancies between the calculated values from the mathematical model and the actual measured values. The training and validation losses for the two optimization objectives of the hybrid model are close in value and consistent in trend, with the coefficients of determination for the fits between the measured and predicted values of the two optimization objectives being 0.995 and 0.981, respectively. Based on evaluation metrics such as RMSE and R2, as well as experimental validation results of the optimal solution sets for the three models, the models are ranked in terms of precision as follows: hybrid model > surrogate model > mathematical model.
- (2)
- A comparative analysis of the Pareto fronts and quantitative performance evaluation metrics for five commonly used multi-objective optimization algorithms, namely NSGA-II, MOEA/D, MOPSO, MOGWO, and SPEA2, was conducted. The optimal solution sets of the three best-performing algorithms were experimentally validated, and their tracking curves were compared. The performance ranking of the five algorithms is as follows: NSGA-II > MOPSO, SPEA2 > MOGWO > MOEA/D.
- (3)
- The coupling technique of neural network surrogate models with intelligent optimization algorithms has been validated as an effective method for optimizing the response speed of PMSM servo systems. Compared with the results before optimization, the selected optimized results achieved an 89.7% reduction in the overshoot optimization target and an 80.1% reduction in the settling time optimization target. Moreover, several non-dominated solutions are available for selection, and all optimized results are superior to those before optimization.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mu, C.; Yang, J.; Wang, K.; Lu, M. Online Value Iteration-Driven Intelligent Control for CMG Gimbal Servo System under Multi-Source Disturbances. Expert Syst. Appl. 2025, 290, 128316. [Google Scholar] [CrossRef]
- Liu, S.; Zhou, S.; Li, B.; Niu, Z.; Abdullah, M.; Wang, R. Servo Torque Fault Diagnosis Implementation for Heavy-Legged Robots Using Insufficient Information. ISA Trans. 2024, 147, 439–452. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Luo, G.; Chen, Z.; Ding, X. Overview on Active Disturbance Rejection Control for Electro-Mechanical Actuation Servo Drive. Chin. J. Aeronaut. 2025, 38, 103292. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, J.; Nie, B.; Liu, Y.; He, X. Adaptive Control of PMSM Servo System for Steering-by-Wire System with Disturbances Observation. IEEE Trans. Transp. Electrif. 2022, 8, 2015–2028. [Google Scholar] [CrossRef]
- Liu, C.; Luo, G.; Chen, Z.; Tu, W. Finite-Time Convergent Multiple Disturbance Rejection Control for Electromechanical Actuators. IEEE Trans. Power Electron. 2021, 36, 6863–6878. [Google Scholar] [CrossRef]
- Shen, B.; Pan, J.; Ning, D.; Wang, H. Research on Trajectory Tracking Control Method for Agricultural Robot Permanent Magnet Synchronous Motor Servo System Based on Improved EMD Threshold Wavelet Filtering. AIP Adv. 2024, 14, 105322. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, H.; Liu, Y.; Lu, M. A Feedrate Planning Method in CNC System Based on Servo Response Error Model. Electronics 2023, 12, 3150. [Google Scholar] [CrossRef]
- Han, Z.; Liu, J. Comparative Analysis of Vibration and Noise in IPMSM Considering the Effect of MTPA Control Algorithms for Electric Vehicles. IEEE Trans. Power Electron. 2021, 36, 6850–6862. [Google Scholar] [CrossRef]
- Sun, Y.; Yang, M.; Chen, Y.; Xu, D. Trajectory Tracking and Vibration Control of Flexible Beams in Multi-Axis System. IEEE Access 2021, 9, 156717–156728. [Google Scholar] [CrossRef]
- Chen, Q.; Li, Y.; Hong, Y.; Shi, H. Prescribed-Time Robust Repetitive Learning Control for PMSM Servo Systems. IEEE Trans. Ind. Electron. 2024, 71, 14753–14763. [Google Scholar] [CrossRef]
- Wang, S.; Gan, H.; Luo, Y.; Wang, X.; Gao, Z. Active Disturbance Rejection Control with Fractional-Order Model-Aided Extended State Observer. ISA Trans. 2023, 142, 527–537. [Google Scholar] [CrossRef]
- Somefun, O.A.; Akingbade, K.; Dahunsi, F. The Dilemma of PID Tuning. Annu. Rev. Control 2021, 52, 65–74. [Google Scholar] [CrossRef]
- Sun, J.; Zhou, H.; Ma, X.; Ju, Z. Study on PID Tuning Strategy Based on Dynamic Stiffness for Radial Active Magnetic Bearing. ISA Trans. 2018, 80, 458–474. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Wang, Z.; Luo, X. Reliable Identification Based Intelligent PID Tuning for Long-Period Process Control under Different Working Conditions. J. Taiwan Inst. Chem. Eng. 2024, 162, 105630. [Google Scholar] [CrossRef]
- Yuan, H.; Yin, S.; Zhou, F.; Zhou, Y. Development of S-Domain Experimental Correlation Thermal Control Model and Rapid Enumeration PID Tuning Method for Uncooled Laser Chip Module. Appl. Therm. Eng. 2024, 256, 124121. [Google Scholar] [CrossRef]
- Wu, Y.; Xiao, H.; Xu, H.; Chen, H.; Zhang, Y.; Yuan, Q. Robust MEMS Temperature Control Platform with GA PSO—Fuzzy PID Control. IEEE Sens. J. 2025, 25, 30570–30578. [Google Scholar] [CrossRef]
- Li, J.; Li, W. On-Line PID Parameters Optimization Control for Wind Power Generation System Based on Genetic Algorithm. IEEE Access 2020, 8, 137094–137100. [Google Scholar] [CrossRef]
- Qiao, D.; Mu, N.; Liao, X.; Le, J.; Yang, F. Improved Evolutionary Algorithm and Its Application in PID Controller Optimization. Sci. China Inf. Sci. 2020, 63, 199205. [Google Scholar] [CrossRef]
- Gupta, M.; Tiwari, P.M.; Viral, R.K.; Shrivastava, A.; Zneid, B.A.; Hunko, I. Grid-Connected PV Inverter System Control Optimization Using Grey Wolf Optimized PID Controller. Sci. Rep. 2025, 15, 28869. [Google Scholar] [CrossRef]
- Zhou, M.; Shuai, Y.; Jiang, D.; Liu, Z. Active Magnetic Bearing PID Tuning with Model-Free Time-Domain Analysis Based Heuristic Algorithm. IEEE Trans. Ind. Inform. 2024, 20, 12157–12167. [Google Scholar] [CrossRef]
- Sun, Y.; Yang, M.; Wang, B.; Chen, Y.; Xu, D. Precise Position Control Based on Resonant Controller and Second-Order Sliding Mode Observer for PMSM-Driven Feed Servo System. IEEE Trans. Transp. Electrif. 2023, 9, 196–209. [Google Scholar] [CrossRef]
- Zhou, J.; Cheng, M.; Wen, H.; Yan, X.; Tong, M.; Wang, W. Modeling and Suppression of Torque Ripple in PMSM Based on the General Airgap Field Modulation Theory. IEEE Trans. Power Electron. 2022, 37, 12502–12512. [Google Scholar] [CrossRef]
- Yu, W.; Liang, H.; Dong, X.; Luo, Y. Modeling and Identification of Permanent Magnet Synchronous Motor via Deterministic Learning. IEEE Access 2020, 8, 168516–168525. [Google Scholar] [CrossRef]
- Gan, H.; Cao, Z.; Chen, P.; Luo, Y.; Luo, X. Fractional-Order Electromagnetic Modeling and Identification for PMSM Servo System. ISA Trans. 2024, 147, 527–539. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Song, Z.; Xiao, X.; Mo, Y.; Zhou, W.; Wu, P. A Precise Modeling Method for PMSM Servo System of Spacecraft. Appl. Sci. 2024, 14, 1161. [Google Scholar] [CrossRef]
- Liu, L.; Li, Z.; Kang, H.; Xiao, Y.; Sun, L.; Zhao, H.; Zhu, Z.Q.; Ma, Y. Review of Surrogate Model Assisted Multi-Objective Design Optimization of Electrical Machines: New Opportunities and Challenges. Renew. Sustain. Energy Rev. 2025, 215, 115609. [Google Scholar] [CrossRef]
- Paturi, U.M.R.; Cheruku, S.; Reddy, N.S. The Role of Artificial Neural Networks in Prediction of Mechanical and Tribological Properties of Composites—A Comprehensive Review. Arch. Comput. Methods Eng. 2022, 29, 3109–3149. [Google Scholar] [CrossRef]
- Elsheikh, A.H.; Sharshir, S.W.; Abd Elaziz, M.; Kabeel, A.E.; Guilan, W.; Haiou, Z. Modeling of Solar Energy Systems Using Artificial Neural Network: A Comprehensive Review. Sol. Energy 2019, 180, 622–639. [Google Scholar] [CrossRef]
- Bhagya Raj, G.V.S.; Dash, K.K. Comprehensive Study on Applications of Artificial Neural Network in Food Process Modeling. Crit. Rev. Food Sci. Nutr. 2022, 62, 2756–2783. [Google Scholar] [CrossRef]
- Dragović, S. Artificial Neural Network Modeling in Environmental Radioactivity Studies—A Review. Sci. Total Environ. 2022, 847, 157526. [Google Scholar] [CrossRef]
- Li, D.H.W.; Aghimien, E.I.; Tsang, E.K.W. Application of Artificial Neural Networks in Horizontal Luminous Efficacy Modeling. Renew. Energy 2022, 197, 864–878. [Google Scholar] [CrossRef]
- Seyedin, M.; Hassanpour, A.; Jalali, A.; Raisee, M. Robust Optimization of a Novel Ultraviolet (UV) Photoreactor for Water Disinfection: A Neural Network Approach. Chemosphere 2024, 362, 142788. [Google Scholar] [CrossRef]
- Li, Z.; Yu, J.; Wang, C.; Bello, I.T.; Yu, N.; Chen, X.; Zheng, K.; Han, M.; Ni, M. Multi-Objective Optimization of Protonic Ceramic Electrolysis Cells Based on a Deep Neural Network Surrogate Model. Appl. Energy 2024, 365, 123236. [Google Scholar] [CrossRef]
- Mao, X.; Liu, S.; Tan, J.; Hu, H.; Lu, C.; Xuan, D. Multi-Objective Optimization of Gradient Porosity of Gas Diffusion Layer and Operation Parameters in PEMFC Based on Recombination Optimization Compromise Strategy. Int. J. Hydrogen Energy 2023, 48, 13294–13307. [Google Scholar] [CrossRef]
- Wang, Z.; Lu, W.; Chang, Z.; Luo, J. A Combined Search Method Based on a Deep Learning Combined Surrogate Model for Groundwater DNAPL Contamination Source Identification. J. Hydrol. 2023, 616, 128854. [Google Scholar] [CrossRef]
- Fromreide, M.; Gómez, D.; Halvorsen, S.A.; Herland, E.V.; Salgado, P. Reduced 2D/1D Mathematical Models for Analyzing Inductive Effects in Submerged Arc Furnaces. Appl. Math. Model. 2021, 98, 59–70. [Google Scholar] [CrossRef]
- Hu, G.; Wang, Z. A Review of Mathematical Models in the Microfiltration Membrane Process. J. Water Process Eng. 2025, 78, 108624. [Google Scholar] [CrossRef]
- Yao, C.; Sun, Z.; Xu, S.; Zhang, H.; Ren, G.; Ma, G. ANN Optimization of Weighting Factors Using Genetic Algorithm for Model Predictive Control of PMSM Drives. IEEE Trans. Ind. Appl. 2022, 58, 7346–7362. [Google Scholar] [CrossRef]
- Yu, Y.; Pan, Y.; Chen, Q.; Hu, Y.; Gao, J.; Zhao, Z.; Niu, S.; Zhou, S. Multi-Objective Optimization Strategy for Permanent Magnet Synchronous Motor Based on Combined Surrogate Model and Optimization Algorithm. Energies 2023, 16, 1630. [Google Scholar] [CrossRef]
- Gu, J.; Hua, W.; Yu, W.; Zhang, Z.; Zhang, H. Surrogate Model-Based Multiobjective Optimization of High-Speed PM Synchronous Machine: Construction and Comparison. IEEE Trans. Transp. Electrif. 2023, 9, 678–688. [Google Scholar] [CrossRef]
- While, L.; Bradstreet, L.; Barone, L. A Fast Way of Calculating Exact Hypervolumes. IEEE Trans. Evol. Comput. 2012, 16, 86–95. [Google Scholar] [CrossRef]
- Cheng, S.; Zhan, H.; Shu, Z.; Fan, H.; Wang, B. Effective Optimization on Bump Inlet Using Meta-Model Multi-Objective Particle Swarm Assisted by Expected Hyper-Volume Improvement. Aerosp. Sci. Technol. 2019, 87, 431–447. [Google Scholar] [CrossRef]
- Zitzler, E.; Thiele, L. Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach. IEEE Trans. Evol. Comput. 1999, 3, 257–271. [Google Scholar] [CrossRef]
- Elarbi, M.; Bechikh, S.; Said, L.B. On the Importance of Isolated Infeasible Solutions in the Many-Objective Constrained NSGA-III. Knowl.-Based Syst. 2021, 227, 104335. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Design variable | [75, 900] |
Design variable | [80, 800] |
Stator resistance | 1.87 Ω |
q-axis inductance | 3.4 × 10−3 mH |
Number of pole pairs | 5 |
Magnetic flux linkage | 6.78 × 10−2 Wb |
Magnetic flux linkage | 5.2 × 10−5 kg·m2 |
Damping coefficient | 0 N·m·s/rad |
System control period | 1/12,000 s |
Filter time constant | 8.4 × 10−4 s |
Inertia ratio | 0.75 |
Rated current | 2.5 A |
Rated torque | 1.27 N·m |
System constant | 6.5797362 × 10−2 |
System constant | 1000 |
Models | Overshoot | Settling Time | ||||||
---|---|---|---|---|---|---|---|---|
RMSE | MSE | MAE | R2 | RMSE | MSE | MAE | R2 | |
Hybrid | ||||||||
Surrogate |
Result Index | Hybrid Model | Surrogate Model | Mathematical Model | |||
---|---|---|---|---|---|---|
Overshoot | Settling Time | Overshoot | Settling Time | Overshoot | Settling Time | |
1 | 0.281 | 0.0160 | 0.342 | 0.0117 | 0.708 | 0.0089 |
2 | 0.305 | 0.0153 | 0.525 | 0.0115 | 0.839 | 0.0088 |
3 | 0.342 | 0.0117 | 0.647 | 0.0083 | 0.891 | 0.0081 |
4 | 0.525 | 0.0078 | 0.656 | 0.0079 | 1.127 | 0.0080 |
5 | 0.708 | 0.0077 | 0.708 | 0.0077 | ||
6 | 0.787 | 0.0076 | 0.787 | 0.0076 | ||
7 | 0.983 | 0.0075 | 0.983 | 0.0075 |
Algorithms | IGD | HV | Optimization Time |
---|---|---|---|
MOEA/D | 1.408 | 0.659 | 353.2 |
MOPSO | 0.212 | 0.992 | 78.8 |
SPEA2 | 0.306 | 0.904 | 62.3 |
MOGWO | 0.208 | 0.992 | 434.1 |
NSGAII | 0.206 | 0.992 | 64.3 |
Result Index | NSGA-II | SPEA2 | MOPSO | |||
---|---|---|---|---|---|---|
Overshoot | Settling Time | Overshoot | Settling Time | Overshoot | Settling Time | |
1 | 0.281 | 0.0160 | 0.311 | 0.0140 | 0.250 | 0.0152 |
2 | 0.305 | 0.0153 | 0.342 | 0.0139 | 0.342 | 0.0138 |
3 | 0.342 | 0.0138 | 0.491 | 0.0084 | 0.403 | 0.0126 |
4 | 0.525 | 0.0079 | 0.525 | 0.0079 | 0.525 | 0.0080 |
5 | 0.598 | 0.0078 | 0.617 | 0.0078 | 0.671 | 0.0079 |
6 | 0.708 | 0.0077 | 0.708 | 0.0077 | 0.708 | 0.0078 |
7 | 0.787 | 0.0076 |
Overshoot | Settling Time | |||
---|---|---|---|---|
Initial | 270 | 210 | 5.10 | 0.0392 |
Optimal | 428 | 462 | 0.525 | 0.0078 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, F.; Li, X.; Hou, H.; Xie, X. Multi-Objective Optimization of PMSM Servo System Control Performance Based on Artificial Neural Network and Genetic Algorithm. Appl. Sci. 2025, 15, 10280. https://doi.org/10.3390/app151810280
Li F, Li X, Hou H, Xie X. Multi-Objective Optimization of PMSM Servo System Control Performance Based on Artificial Neural Network and Genetic Algorithm. Applied Sciences. 2025; 15(18):10280. https://doi.org/10.3390/app151810280
Chicago/Turabian StyleLi, Futeng, Xianglong Li, Huan Hou, and Xiyang Xie. 2025. "Multi-Objective Optimization of PMSM Servo System Control Performance Based on Artificial Neural Network and Genetic Algorithm" Applied Sciences 15, no. 18: 10280. https://doi.org/10.3390/app151810280
APA StyleLi, F., Li, X., Hou, H., & Xie, X. (2025). Multi-Objective Optimization of PMSM Servo System Control Performance Based on Artificial Neural Network and Genetic Algorithm. Applied Sciences, 15(18), 10280. https://doi.org/10.3390/app151810280