Defining Robust NVH Requirements for an Electrified Powertrain Mounting System Based on Solution Space During Early Phase of Development
Abstract
1. Introduction
2. Methodology and Workflow
2.1. Electric Powertrain Mounting System
2.2. Workflow
2.3. Simulation Model
2.4. Data-Driven Model
2.5. Solution Space Engineering
3. Application
3.1. Problem Definition
3.2. Identification of Frequency-Dependent Solution Box
4. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NVH | Noise, vibration and harshness |
BEV | Battery electric vehicle |
PMS | Powertrain mounting system |
SSE | Solution space engineering |
EDU | Electric drive unit |
inM | Inner mount |
foM | Front outer mount |
roM | Rear outer mount |
SPL | Sound pressure level |
NN | Neural Network |
FE | Finite element |
MSE | Mean squared error |
References
- Lieske, D.; Landes, D.; Fischer, J. Optimization of thePowertrain Noise for the Electric Vehicle Mercedes-Benz EQC. ATZ Worldw. 2020, 122, 60–64. [Google Scholar] [CrossRef]
- Droste, M.; Rieß, S.; Cóndor López, J.; Erraji, A. Vibroacoustic Metamaterials for Reduced Sound Radiation of an Electric Powertrain. MTZ Worldw. 2023, 84, 44–47. [Google Scholar] [CrossRef]
- Wellmann, T.; Tousignant, T.; Govindswamy, K.; Tomazic, D.; Steffens, C.; Janssen, P. NVH Aspects of Electric Drive Unit Development and Vehicle Integration. In Proceedings of the Noise and Vibration Conference & Exhibition, Grand Rapids, MI, USA, 10–13 June 2019; SAE International: Warrendale, PA, USA, 2019. [Google Scholar] [CrossRef]
- Steffens, C.; Lechner, C.; Lauen, M.; Suresh, H. Challenges for Vehicle NVH and Acoustics Due to Electric Mobility. ATZ Worldw. 2023, 125, 38–43. [Google Scholar] [CrossRef]
- P3 Group GmbH. eMobility Fahrzeug-Studie 2021. 2021. Available online: https://www.p3-group.com/p3-updates/p3-charging-index-2024/#:~:text=Der%20P3%20Charging%20Index%20wurde,reale%20Reichweite%20in%20Kilometern%20nachzuladen (accessed on 16 September 2025).
- Blickensdorff, J.; Boulliung, M.; Burkard, M.; Dold, C.; Emretsson, B.G.; Genuit, K.; Graf, B.; Kurch, M.; Millithaler, P.; Mohr, C.; et al. Akustik. In Elektrifizierung des Antriebsstrangs: Grundlagen-vom Mikro-Hybrid zum Vollelektrischen Antrieb; Tschöke, H., Gutzmer, P., Pfund, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 307–363. [Google Scholar] [CrossRef]
- Münder, M.; Carbon, C.C. A literature review [2000–2022] on vehicle acoustics: Investigations on perceptual parameters of interior soundscapes in electrified vehicles. Front. Mech. Eng. 2022, 8, 974464. [Google Scholar] [CrossRef]
- Nataraja S, M.; Rao, M.; Raghavendran, P.; Selvam, E. NVH Refinement of Structure-Borne Tonal Noise in Electric Vehicle. In Proceedings of the Symposium on International Automotive Technology, Pune, India, 23–25 January 2024; SAE International: Warrendale, PA, USA, 2024. [Google Scholar] [CrossRef]
- Gröne, M.; Schwarzendahl, S.; Troge, J.; Hensel, E. Transfer Stiffness Characterization of Elastomer Mounts at High Frequencies. ATZ Worldw. 2025, 127, 40–43. [Google Scholar] [CrossRef]
- Kruse, E.; Sell, H.; Loecken, F. Electric Motor Mounting System Validation with Subsystem and Powered e-Axle Tests. In Proceedings of the Noise and Vibration Conference & Exhibition, Grand Rapids, MI, USA, 15–18 May 2023; SAE International: Warrendale, PA, USA, 2023. [Google Scholar]
- Bahr, S.; Jacobs, G.; Höpfner, G.; Hensel, E.; Troge, J.; Rapp, T. Topology optimization of nonlinear elastomer engine mounts considering the transfer behavior. Forsch. Ingenieurwesen 2025, 89, 72. [Google Scholar] [CrossRef]
- Stoll, G.; Atzrodt, H.; Hansen, T.; Hülsebrock, M.; Kleinfeller, N. Application of vibroacoustic metamaterial to compensate continuum resonance in powertrain mounting systems for electric vehicles. In Proceedings of the 2024 Eighteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials), Chania, Greece, 9–14 September 2024; pp. 1–3. [Google Scholar] [CrossRef]
- Cóndor López, J.; Stumpf, J.; Freitag, H.G. Robust design optimization of nonlinear powertrain mounting systems with solution space engineering. In Proceedings of the International Conference on Noise and Vibration Engineering (ISMA 2022) and International Conference on Uncertainty in Structural Dynamics (USD 2022), Leuven, Belgium, 12–14 September 2022. [Google Scholar]
- Grimm, A.; Finger, K.; Stoll, G.; Atzrodt, H.; Herold, S. Implementation of a modular model for active engine mounts and coupling with a reduced model for full-vehicle NVH-simulation. In Proceedings of the Aachen Acoustics Colloquium 2018, Aachen, Germany, 26–28 November 2018; pp. 93–102. [Google Scholar]
- Qureshi, A.J.; Dantan, J.Y.; Bruyere, J.; Bigot, R. Set-based design of mechanical systems with design robustness integrated. Int. J. Prod. Dev. 2014, 19, 64–89. [Google Scholar] [CrossRef]
- Zimmermann, M.; von Hoessle, J.E. Computing solution spaces for robust design. Int. J. Numer. Methods Eng. 2013, 94, 290–307. [Google Scholar] [CrossRef]
- Königs, S.; Zimmermann, M. Resolving conflicts of goals in complex design processes—Application to the design of engine mount systems. In Proceedings of the 7th International Munich Chassis Symposium, Munich, Germany, 14–15 June 2016; Pfeffer, P., Ed.; Springer Vieweg: Wiesbaden, Germany, 2017; pp. 125–141. [Google Scholar]
- Xu, D. Vibration and Noise Reduction Using Solution Spaces. Ph.D. Thesis, Technical University of Munich, Munich, Germany, 2024. [Google Scholar]
- Xu, D.; Häußler, M.; Zimmermann, M. Requirement Definition for a Vibration Source Using Transfer Path Analysis and Solution Spaces. In Proceedings of the Automotive Acoustics Conference 2023, Rueschlikon, Switzerland, 11–12 July 2023; Heintzel, A., Ed.; Springer Vieweg: Wiesbaden, Germany, 2025; pp. 53–68. [Google Scholar]
- Horváth, K.; Zelei, A. Simulating Noise, Vibration, and Harshness Advances in Electric Vehicle Powertrains: Strategies and Challenges. World Electr. Veh. J. 2024, 15, 367. [Google Scholar] [CrossRef]
- Zeller, P. (Ed.) Handbuch Fahrzeugakustik: Grundlagen, Auslegung, Berechnung, Versuch; Springer Vieweg: Wiesbaden, Germany, 2018. [Google Scholar] [CrossRef]
- Fiedler, U.; Visser, R.; Kreissig, V. Interior noise optimization of powertrain induced vibrations for an electric vehicle using machine learning methods. In Proceedings of the Automotive Acoustics Conference, Rueschlikon, Switzerland, 11–12 July 2023. [Google Scholar]
- Cóndor López, J.; Hansen, T.; Weber, A.; Kleinfeller, N.; Finger, K. Gezielte Modifikation des Übertragungsverhaltens von Elastomerlagern durch den Einsatz von vibro-akustischen Metamaterialien. In Proceedings of the Fortschritte der Akustik—DAGA 2024, Hannover, Germany, 18–21 March 2024. [Google Scholar]
- Hornik, K.; Stinchcombe, M.; White, H. Multilayer feedforward networks are universal approximators. Neural Netw. 1989, 2, 359–366. [Google Scholar] [CrossRef]
- Hughes, A.; Grawoig, D. Statistics, a Foundation for Analysis; Business and Economics Series; Addison-Wesley Publishing Company: Boston, MA, USA, 1971. [Google Scholar]
- Stumpf, J.; Naumann, T.; Vogt, M.; Duddeck, F.; Zimmermann, M. On the Treatment of Equality Constraints in Mechanical Systems Design Subject to Uncertainty. In Proceedings of the NordDesign 2020, Lyngby, Denmark, 12–14 August 2020. [Google Scholar] [CrossRef]
- Zimmermann, M.; Königs, S.; Niemeyer, C.; Fender, J.; Zeherbauer, C.; Vitale, R.; Wahle, M. On the design of large systems subject to uncertainty. J. Eng. Des. 2017, 28, 233–254. [Google Scholar] [CrossRef]
Mount Name | Design Space | |
---|---|---|
Lower Bound [x y z] | Upper Bound [x y z] | |
Front inner mount (inM) | ||
Rear inner mount (inM) | ||
Front outer mount (foM) | ||
Rear outer mount (roM) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cóndor López, J.G.; Finger, K.; Herold, S. Defining Robust NVH Requirements for an Electrified Powertrain Mounting System Based on Solution Space During Early Phase of Development. Appl. Sci. 2025, 15, 10241. https://doi.org/10.3390/app151810241
Cóndor López JG, Finger K, Herold S. Defining Robust NVH Requirements for an Electrified Powertrain Mounting System Based on Solution Space During Early Phase of Development. Applied Sciences. 2025; 15(18):10241. https://doi.org/10.3390/app151810241
Chicago/Turabian StyleCóndor López, José G., Karsten Finger, and Sven Herold. 2025. "Defining Robust NVH Requirements for an Electrified Powertrain Mounting System Based on Solution Space During Early Phase of Development" Applied Sciences 15, no. 18: 10241. https://doi.org/10.3390/app151810241
APA StyleCóndor López, J. G., Finger, K., & Herold, S. (2025). Defining Robust NVH Requirements for an Electrified Powertrain Mounting System Based on Solution Space During Early Phase of Development. Applied Sciences, 15(18), 10241. https://doi.org/10.3390/app151810241