Shear Strength and Seepage Control of Soil Samples Used for Vertical Barrier Construction—A Comparative Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Tested Soil Samples
2.2. Methodology of Laboratory Testing
3. Results
3.1. Drained Shear Strength Tests
3.2. Permeability Test Results
4. Discussion
5. Conclusions
- Barrier performance varies according to the technology and the soil type: DSM is most effective in clay-rich soils (φ′ up to 4°); LPG achieved the lowest permeability (7 × 10−11 m/s) in granular soils; VBSWs balanced strength and impermeability and were most effective in silty sands.
- Efficiency strongly depends on plasticity and liquidity indices; however, detailed geotechnical characterization is essential.
- Back-pressure saturation and gradient stabilization ensured reliable shear strength and permeability measurements for each test performed in the study.
- All three barrier types improved hydraulic performance and shear strength, achieving a permeability of <1 × 10−9 m/s, with the greatest benefits in granular soils.
- Higher soil plasticity reduces barrier efficiency; thus, it is essential to choose installation technology depending on local conditions.
- The findings support integrated geotechnical and hydraulic testing as a basis for selecting and designing impermeable barriers in flood protection and embankment restoration.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
VBSW | Vibrating beam slurry walls |
DSM | Deep soil mixing |
LPG | Low-pressure grouting |
References
- Farooq, K.; ur Rehman, Z.; Shahzadi, M.; Mujtaba, H.; Khalid, U. Optimization of Sand-Bentonite Mixture for the Stable Engineered Barriers Using Desirability Optimization Methodology: A Macro-Micro-Evaluation. KSCE J. Civ. Eng. 2023, 27, 40–52. [Google Scholar] [CrossRef]
- Khalid, U.; ur Rehman, Z.; Liao, C.; Farooq, K.; Mujtaba, H. Compressibility of Compacted Clays Mixed with a Wide Range of Bentonite for Engineered Barriers. Arab. J. Sci. Eng. 2019, 44, 5027–5042. [Google Scholar] [CrossRef]
- Skutnik, Z.; Bajda, M.; Lech, M. The Selection of Sealing Technologies of the Subsoil and Hydrotechnical Structures and Quality Assurance. Open Eng. 2019, 9, 420–427. [Google Scholar] [CrossRef]
- Skutnik, Z.; Bajda, M.; Lech, M.; Wdowska, M.; Kuś, R. Application of CPT Soundings and BAT Permeability Tests for Evaluation of the Durability of Slurry Cutoff Walls in Modernized Flood Embankments. Inżynieria I Bud. 2017, 3, 143–146. [Google Scholar]
- Mirecki, J.; Pitera, P. Optimization of Sealing Screen Dimensions in Levees. Acta Sci. Pol. Archit. 2013, 12, 147–156. [Google Scholar]
- Lipinski, M.J.; Koda, E.; Wdowska, M. Assessment of Key Geotechnical Characteristics of a Groundwater Protective Vertical Barrier. In Proceedings of the 14th European Conference on Soil Mechanics and Geotechnical Engineering: Geotechnical Engineering in Urban Environments, Madrid, Spain; Cuélla, V., Cuéllar, V., Dapena, E., Alonso, E., Echave, J.M., Gens, A., De Justo, J.L., Oteo, C., Rodríguez-Ortiz, J.M., Sagaseta, C., Sola, P., Soriano, A., Eds.; Millpress Science Publishers: Rotterdam, The Netherlands, 2007; pp. 767–772. [Google Scholar]
- Lipinski, M.J.; Koda, E.; Wdowska, M. Laboratory Assessment of Permeability of a Groundwater Protective Barrier. Ann. Wars. Univ. Life Sci.—SGGW. Land Reclam. 2008, 38, 69–79. [Google Scholar] [CrossRef]
- Chung, Y.W.; Kim, J.; Kong, S.-H. Performance Prediction of Permeable Reactive Barriers by Three-Dimensional Groundwater Flow Simulation. Int. J. Environ. Sci. Dev. 2011, 2, 138–141. [Google Scholar] [CrossRef]
- Koda, E.; Osinski, P. Bentonite Cut-off Walls: Solution for Landfill Remedial Works. Environ. Geotech. 2017, 4, 223–232. [Google Scholar] [CrossRef]
- Higgins, M.R.; Olson, T.M. Life-Cycle Case Study Comparison of Permeable Reactive Barrier versus Pump-and-Treat Remediation. Environ. Sci. Technol. 2009, 43, 9432–9438. [Google Scholar] [CrossRef]
- Slater, L.; Baker, J.; Binley, A.; Glaser, D.; Utne, I. Electrical Imaging of Permeable Reactive Barrier (PRB) Integrity. In Proceedings of the Symposium on the Application of Geophysics to Engineering and Environmental Problems, Las Vegas, NV, USA, 10–14 February 2002; p. ESC3. [Google Scholar] [CrossRef]
- Abdullah, H.H.; Shahin, M.A. Geomechanical Behaviour of Clay Stabilised with Fly-Ash-Based Geopolymer for Deep Mixing. Geosciences 2022, 12, 207. [Google Scholar] [CrossRef]
- Shah, A.S.N.; Zali, M.A. Potential of Tropical Expansive Clays as Natural Sealing Layer in Nuclear Waste Repository System: A Preliminary Study. IOP Conf. Ser. Mater. Sci. Eng. 2023, 1285, 012018. [Google Scholar] [CrossRef]
- Kim, D.; Han, J. Remediation of Multiply Contaminated Ground via Permeable Reactive Barrier and Electrokinetic Using Recyclable Food Scrap Ash (FSA). Appl. Sci. 2020, 10, 1194. [Google Scholar] [CrossRef]
- Wang, S.; Sun, W.; Wang, X.; Sun, L.; Liu, S. The Role of Geological Methods in the Prevention and Control of Urban Flood Disaster Risk: A Case Study of Zhengzhou. Appl. Sci. 2024, 14, 1839. [Google Scholar] [CrossRef]
- Villamizar, M.L.; Stoate, C.; Biggs, J.; Szczur, J.; Williams, P.; Brown, C.D. A Model for Quantifying the Effectiveness of Leaky Barriers as a Flood Mitigation Intervention in an Agricultural Landscape. River Res. Appl. 2024, 40, 365–378. [Google Scholar] [CrossRef]
- Wang, S.; Wu, J.; Cai, P.; Chen, C.; Ye, S.; Xu, J.; Chen, L.; Luo, X.; Wei, J. Modelling of Contaminant Transport in Heterogeneous Vertical Barrier. Water Environ. J. 2024, 38, 169–177. [Google Scholar] [CrossRef]
- Wasson, R.; Saikia, A.; Bansal, P.; Chuah, C.J. Flood Mitigation, Climate Change Adaptation and Technological Lock-In in Assam. Ecol. Econ. Soc.—INSEE J. 2020, 3, 83–104. [Google Scholar] [CrossRef]
- Harada, N.; Satofuka, Y.; Mizuyama, T. A Proposal for Sediment Control Countermeasures in Non-Flowing Mountain Streams. Water 2024, 16, 1197. [Google Scholar] [CrossRef]
- Boulange, J.; Hanasaki, N.; Yamazaki, D.; Pokhrel, Y. Role of Dams in Reducing Global Flood Exposure under Climate Change. Nat. Commun. 2021, 12, 417. [Google Scholar] [CrossRef]
- Basu, D.; Basu, P.; Prezzi, M. Analytical Solutions for Consolidation Aided by Vertical Drains. Geomech. Geoengin. Int. J. 2006, 1, 63–71. [Google Scholar] [CrossRef]
- Sukerta, I.M.; Chen, T.C.; Mardizal, J.; Salih, S.M.; Zulkarnain, I.; Islam, M.Z.; Majeed, M.S.; Mahdi, A.B.; Mutlak, D.A.; Aravindhan, S. Comparison of Lateral Spillway and Morning Glory Spillway Performance in Flood Control. J. Water Land Dev. 2022, 53, 187–191. [Google Scholar] [CrossRef]
- Sha, S.; Zhou, X.; Zhang, C.; Yuan, Y. Research on Urban Embankment Reinforcement—Example of Dadu River Embankment in Leshan City. ce/papers 2025, 8, 1798–1806. [Google Scholar] [CrossRef]
- Cao, B.; Xu, J.; Wang, F.; Zhang, Y.; O’connor, D. Vertical Barriers for Land Contamination Containment: A Review. Int. J. Environ. Res. Public Health 2021, 18, 12643. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Zhang, Y. Evaluation of the Service Performance of Soil–Bentonite Vertical Cut-Off Walls at Heavy Metal Contaminated Sites: A Review. Appl. Sci. 2025, 15, 5215. [Google Scholar] [CrossRef]
- Yamada, S.; Sakai, T.; Nakano, M.; Noda, T. Method to Introduce the Cementation Effect into Existing Elastoplastic Constitutive Models for Soils. J. Geotech. Geoenviron. Eng. 2022, 148, 04022013. [Google Scholar] [CrossRef]
- Xu, W.; Liu, B.; Wu, J.; Xu, W.; Liu, B.; Wu, J. Construction Technology and Service Performance of Waterproof Curtain for Foundation Pit in Large-Particle Pebble Gravel Layer of Yangtze River Floodplain. Appl. Sci. 2024, 14, 5962. [Google Scholar] [CrossRef]
- Ma, X.; Liu, Y.; Yin, W.; Wang, X.; Guo, S. Experimental Study on Strength and Microstructure of Loess Improved by CG-2 Curing Agent and Cement. Buildings 2024, 14, 877. [Google Scholar] [CrossRef]
- Petalas, A.L.; Tsiampousi, A.; Zdravkovic, L.; Potts, D.M. Numerical Investigation of the Performance of Engineered Barriers in Reducing Flood Risk. MATEC Web Conf. 2021, 337, 04003. [Google Scholar] [CrossRef]
- PN-EN ISO 17892-9:2018-05; In Geotechnical Investigation and Testing—Laboratory Testing of Soil—Part 9: Consolidated Triaxial Compression Test on Water Saturated Soils. International Organization for Standardization (ISO): Geneva, Switzerland, 2018.
- Lipiński, M.J.; Wdowska, M.K.; Wudzka, A. Capability of Triaxial Apparatus with Respect to Evaluation of Nonlinearity of Soil Stiffness. Arch. Civ. Eng. 2020, 66, 69–80. [Google Scholar] [CrossRef]
- Olsen, H.W.; Morin, R.H.; Nichols, R.W. Flow Pump Applications in Triaxial Testing; ASTM Selected Technical Papers; ASTM International: West Conshohocken, PA, USA, 1988; Volume STP977-EB, pp. 68–81. [Google Scholar] [CrossRef]
- Lipinski, M.J.; Wdowska, M.K. Evaluation of Void Ratio of Sands with Various Amount of Fines on the Basis of Shear Wave Velocity Measurement. IOP Conf. Ser. Mater. Sci. Eng. 2019, 471, 042026. [Google Scholar] [CrossRef]
- Barman, D.; Dash, S.K. Stabilization of Expansive Soils Using Chemical Additives: A Review. J. Rock Mech. Geotech. Eng. 2022, 14, 1319–1342. [Google Scholar] [CrossRef]
- Jamiolkowski, M.; Leroueil, S.; Lo Presti, D. Design Parameters from Theory to Practice. In Proceedings of the GEO-COAST ’91, Yokohama, Japan, 3–6 September 1991; Volume 2, pp. 877–917. [Google Scholar]
Barrier Techn. | Wn | Grain Size Distribution | Soil Type * | Plasticity Parameters | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Gr | Sa | Si | Cl | wP | wL | PI | LI | CI | |||
(%) | (%) | (%) | (%) | (%) | (-) | (-) | |||||
VBSWs | 19.7 | 1 | 79 | 16 | 4 | clSa | 18.7 | 22.4 | 3.6 | 0.27 | 0.73 |
21.8 | 1 | 82 | 14 | 3 | siSa | 21.0 | 24.5 | 3.5 | 0.23 | 0.77 | |
DSM | 14.6 | - | 82 | 13 | 5 | clSa | 13.5 | 18.2 | 4.7 | 0.24 | 0.76 |
14.8 | - | 85 | 13 | 2 | FSa | 14.4 | 17.6 | 3.2 | 0.12 | 0.88 | |
23.7 | - | 40 | 59 | 1 | saSi | 23.8 | 36.9 | 13.1 | −0.01 | 1.01 | |
LPG | 16.0 | - | 42 | 48 | 10 | saclSi | 17.6 | 30.0 | 12.4 | −0.13 | 1.13 |
19.0 | - | 30 | 61 | 9 | 18.1 | 24.6 | 6.5 | 0.13 | 0.87 | ||
18.4 | - | 31 | 57 | 12 | 18.6 | 28.3 | 9.7 | −0.02 | 1.02 | ||
22.0 | - | 27 | 61 | 12 | 19.7 | 29.3 | 9.6 | 0.24 | 0.76 | ||
21.3 | - | 29 | 59 | 12 | 20.7 | 34.0 | 13.3 | 0.05 | 0.95 | ||
20.6 | - | 16 | 66 | 18 | sasiCl | 24.0 | 44.3 | 20.3 | −0.17 | 1.17 |
Barrier Techn. | Wn | Soil Type * | No Barrier | Barrier | ||
---|---|---|---|---|---|---|
φ′ | k | φ′ | k | |||
(%) | (°) | (m/s) | (°) | (m/s) | ||
VBSWs | 19.71 | clSa | 33 | 4.20 × 10−6 | 37 | 8.10 × 10−9 |
21.8 | siSa | 34 | 5.00 × 10−6 | 38 | 1.10 × 10−8 | |
DSM | 14.61 | clSa | 32 | 7.41 × 10−7 | 36 | 3.47 × 10−9 |
14.3 | FSa | 32 | 7.54 × 10−6 | 35 | 3.53 × 10−8 | |
23.65 | saSi | 31 | 1.50 × 10−8 | 34 | 1.10 × 10−10 | |
LPG | 10.95 | saclSi | 30 | 3.50 × 10−9 | 32 | 7.25 × 10−11 |
17.87 | 31 | 1.01 × 10−7 | 34 | 4.20 × 10−10 | ||
14.43 | 31 | 1.57 × 10−7 | 33 | 2.49 × 10−9 | ||
23.39 | 30 | 1.75 × 10−8 | 33 | 1.25 × 10−10 | ||
21.3 | 29 | 6.54 × 10−8 | 31 | 8.31 × 10−10 | ||
18.14 | sasiCl | 31 | 7.75 × 10−8 | 32 | 1.49 × 10−9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wdowska, M.; Lipiński, M.; Nasiłowski, K.; Osiński, P. Shear Strength and Seepage Control of Soil Samples Used for Vertical Barrier Construction—A Comparative Study. Appl. Sci. 2025, 15, 9413. https://doi.org/10.3390/app15179413
Wdowska M, Lipiński M, Nasiłowski K, Osiński P. Shear Strength and Seepage Control of Soil Samples Used for Vertical Barrier Construction—A Comparative Study. Applied Sciences. 2025; 15(17):9413. https://doi.org/10.3390/app15179413
Chicago/Turabian StyleWdowska, Małgorzata, Mirosław Lipiński, Kamil Nasiłowski, and Piotr Osiński. 2025. "Shear Strength and Seepage Control of Soil Samples Used for Vertical Barrier Construction—A Comparative Study" Applied Sciences 15, no. 17: 9413. https://doi.org/10.3390/app15179413
APA StyleWdowska, M., Lipiński, M., Nasiłowski, K., & Osiński, P. (2025). Shear Strength and Seepage Control of Soil Samples Used for Vertical Barrier Construction—A Comparative Study. Applied Sciences, 15(17), 9413. https://doi.org/10.3390/app15179413