applsci-logo

Journal Browser

Journal Browser

Advanced Research in Structures and Rocks in Geotechnical Engineering: 2nd Edition

A special issue of Applied Sciences (ISSN 2076-3417). This special issue belongs to the section "Civil Engineering".

Deadline for manuscript submissions: 31 December 2025 | Viewed by 950

Special Issue Editor


E-Mail Website
Guest Editor
Built Environment Engineering Department, School of Future Environments, Auckland University of Technology, 1010 Auckland, The Netherlands
Interests: slope stability; ground improvement; slope monitoring; foundation design; optimization techniques
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue aims to showcase state-of-the-art research, critical literature reviews, pioneering fieldwork, innovative laboratory investigations, and advanced computational problem-solving in the context of structures in soil and rock. This Special Issue highlights original contributions across a diverse range of topics, including, but not limited to, shallow and deep foundations, retaining walls, tunnels and underground spaces, embankments, earth dams, soil and rock slopes, mining and excavation, and blasting. Submissions related to theories, applications, and real-world challenges in Geotechnical Engineering are welcomed. This Special Issue provides a platform for researchers, engineers, and practitioners to present their latest findings and exchange ideas that will drive the future of geotechnical innovation.

Dr. Roohollah Kalatehjari
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Applied Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • geotechnical engineering
  • rock mechanics
  • soil mechanics
  • foundation engineering
  • slop stability
  • computational geotechnics
  • landslides

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

14 pages, 2531 KB  
Article
SEM-Based Approaches for the Identification and Quantification of Anhydrite
by Emmanuele Giordano, Arianna Paschetto, Emanuele Costa, Sabrina M. R. Bonetto, Pietro Mosca, Gianluca Frasca and Chiara Caselle
Appl. Sci. 2025, 15(17), 9584; https://doi.org/10.3390/app15179584 - 30 Aug 2025
Viewed by 305
Abstract
For investigating and modeling the swelling potential of anhydrite rocks, it is important to define a fast but accurate, reliable, and repeatable procedure for mineral identification and quantification of anhydrite mineral in rock samples. We propose a quantitative evaluation of the applicability of [...] Read more.
For investigating and modeling the swelling potential of anhydrite rocks, it is important to define a fast but accurate, reliable, and repeatable procedure for mineral identification and quantification of anhydrite mineral in rock samples. We propose a quantitative evaluation of the applicability of two different SEM-based approaches (namely, image analysis and the use of the O/S atomic ratio) for the identification and quantification of anhydrite in polished slices of rock. We compare the results obtained with the bulk densities of the samples and with the outcomes of thermogravimetric analyses, demonstrating high convergence between the different data. We eventually propose a critical comparison between the proposed approaches and the existing methods, overall providing a practical guide for the selection of the best analytical procedure for the quantification of anhydrite content in rocks and, consequently, for the correct estimation of swelling potential. Full article
Show Figures

Figure 1

14 pages, 3572 KB  
Article
Shear Strength and Seepage Control of Soil Samples Used for Vertical Barrier Construction—A Comparative Study
by Małgorzata Wdowska, Mirosław Lipiński, Kamil Nasiłowski and Piotr Osiński
Appl. Sci. 2025, 15(17), 9413; https://doi.org/10.3390/app15179413 - 27 Aug 2025
Viewed by 434
Abstract
Vertical low-permeability barriers are widely used to improve the stability and seepage resistance of flood embankments. The present study evaluates three barrier technologies—vibrating beam slurry walls (VBSWs), deep soil mixing (DSM), and low-pressure grout injection (LPG)—through a series of consolidated drained triaxial tests [...] Read more.
Vertical low-permeability barriers are widely used to improve the stability and seepage resistance of flood embankments. The present study evaluates three barrier technologies—vibrating beam slurry walls (VBSWs), deep soil mixing (DSM), and low-pressure grout injection (LPG)—through a series of consolidated drained triaxial tests and permeability coefficient tests on soil samples collected from the sites where different barrier installation technologies were used. All three barrier installation methods produced substantial improvements in both mechanical and hydraulic performance: the effective angle of internal friction (φ′) increased by 3–6° in samples with a plasticity index near 3.5%, and coefficients of permeability dropped from 10−8–10−7 m/s in untreated soils to below 10−9 m/s in treated specimens. The key finding of the study is that the barrier performance varies by the technology and the soil type. According to the result, DSM is the most effective technology used in clay-rich soils (φ′ increased up to 4°); LPG achieved the lowest permeability (7 × 10−11 m/s) in granular soils; and VBSWs balanced strength and impermeability, most effective in silty sands. Flow-pump tests further demonstrated that treated soils required much longer to stabilize under a constant flow rate and could sustain higher hydraulic gradients before reaching equilibrium. These findings show the importance of matching barrier technology to soil plasticity and liquidity characteristics and highlight saturation as essential for reliable laboratory evaluation. The results provide a scientific basis for selecting and designing vertical barriers in flood-preventing infrastructure, offering performance benchmarks for improving hydraulic and geotechnical structures. Full article
Show Figures

Figure 1

Back to TopTop