Prediction of the Gross Motor Function Measure-66 in Ambulant Children with Cerebral Palsy Based on Instrumental Gait Analysis Using Machine-Learning Algorithms
Abstract
1. Introduction
2. Materials and Methods
2.1. Gross Motor Function Measure-66 (GMFM-66)
2.2. Gross Motor Function Classification System (GMFCS)
- Level I: walks without limitations; slight issues with advanced motor skills.
- Level II: walks without aids; limited in community mobility.
- Level III: walks with assistive devices; limited outdoor mobility.
- Level IV: limited self-mobility; uses wheeled mobility outside.
- Level V: severely limited mobility; dependent on assistance even with aids.
2.3. Zebris FDM Gait Analysis System
- -
- Age in years;
- -
- Height in cm;
- -
- Weight in kg;
- -
- CP subtype;
- -
- Mean and standard deviation of speed in km/h;
- -
- Mean stance phase in % and side difference in stance phase in %;
- -
- Average step width in cm and side difference in step width in %;
- -
- Average step length in cm and side difference in step length in %;
- -
- Average step time in seconds and side difference in step time in %;
- -
- Average foot rotation in degree angle and side difference in foot rotation in %;
- -
- Average length of gait line (LOGT = the length of the rolling surface of the foot) and side difference in LOGT in %;
- -
- Average single support line (SSL = the length of the rolling surface of the foot where the contralateral foot is in the swing phase) and side difference in SSL in %.
2.4. Study Population
2.5. Statistical Analysis
3. Results
3.1. Study Population
- -
- Three data sets because the age was >18 years;
- -
- Five data sets because the interval between GMFM-66 and gait analysis was >5 days;
- -
- Six data sets because the gait analysis was incomplete.In total, the data of n = 256 children and adolescents were analyzed.
3.2. Multiple Linear Regression
3.3. Machine Learning Models
3.4. Predictive Performance Analysis of the Evaluated Models
4. Discussion
Limitation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CCC | Concordance correlation coefficient (by Lin) |
CP | Cerebral palsy |
EMG | Electromyography |
FNN | Feed forward neural net |
GMFCS | Gross Motor Function Classification System |
GMFM | Gross Motor Function Measure |
ICC | Intraclass Correlation Coefficients |
IGA | Instrumented Gait Analysis |
LOGL | Length of gait line |
LOGT | length of the rolling surface of the foot |
MAE | Mean absolute error |
MCID | Minimum clinically important difference |
mGDI | Modified Gait Deviation Index |
PCC | Pearson correlation coefficient |
RF | Random Forest |
RMSE | Root mean square error |
SD | Standard deviation |
SVM | Support vector machine |
References
- Sadowska, M.; Sarecka-Hujar, B.; Kopyta, I. Cerebral Palsy. Current Opinions on Definition, Epidemiology, Risk Factors, Classification and Treatment Options. Neuropsychiatr. Dis. Treat. 2020, 16, 1505–1518. [Google Scholar] [CrossRef] [PubMed]
- Colver, A.; Fairhurst, C.; Pharoah, P.O.D. Cerebral palsy. Lancet 2014, 383, 1240–1249. [Google Scholar] [CrossRef] [PubMed]
- Sellier, E.; Platt, M.J.; Andersen, G.L.; Krägeloh-Mann, I.; de La Cruz, J.; Cans, C. Decreasing prevalence in cerebral palsy. A multi-site European population-based study, 1980 to 2003. Dev. Med. Child Neurol. 2016, 58, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Paul, S.; Nahar, A.; Bhagawati, M.; Kunwar, A.J. A Review on Recent Advances of Cerebral Palsy. Oxid. Med. Cell. Longev. 2022, 2022, 2622310. [Google Scholar] [CrossRef]
- Novak, I.; Morgan, C.; Fahey, M.; Finch-Edmondson, M.; Galea, C.; Hines, A.; Langdon, K.; Namara, M.M.; Paton, M.C.; Popat, H.; et al. State of the Evidence Traffic Lights 2019. Systematic Review of Interventions for Preventing and Treating Children with Cerebral Palsy. Curr. Neurol. Neurosci. Rep. 2020, 20, 3. [Google Scholar] [CrossRef]
- Rosenbaum, P.; Paneth, N.; Leviton, A.; Goldstein, M.; Bax, M.; Damiano, D.; Dan, B.; Jacobsson, B. A report. The definition and classification of cerebral palsy April 2006. Dev. Med. Child neurology. Suppl. 2007, 109, 8–14. [Google Scholar]
- Palisano, R.J.; Hanna, S.E.; Rosenbaum, P.L.; Russell, D.J.; Walter, S.D.; Wood, E.P.; Raina, P.S.; Galuppi, B.E. Validation of a model of gross motor function for children with cerebral palsy. Phys. Ther. 2000, 80, 974–985. [Google Scholar] [CrossRef]
- Mayston, M. Gross Motor Function Measure (GMFM-66 & GMFM-88) User’s Manual, 3rd Edition Dianne J Russell, Marilyn Wright, Peter L Rosenbaum, Lisa M Avery London: Mac Keith Press, 2021 £80.00 (Paperback), pp. 320 ISBN: 978-1-911612-49-0. Dev. Med. Child Neurol. 2021, 63, 1236. [Google Scholar]
- Fowler, E.G.; Kolobe, T.H.; Damiano, D.L.; Thorpe, D.E.; Morgan, D.W.; Brunstrom, J.E.; Coster, W.J.; Henderson, R.C.; Pitetti, K.H.; Rimmer, J.H.; et al. Promotion of physical fitness and prevention of secondary conditions for children with cerebral palsy. Section on pediatrics research summit proceedings. Phys. Ther. 2007, 87, 1495–1510. [Google Scholar] [CrossRef]
- Carlon, S.L.; Taylor, N.F.; Dodd, K.J.; Shields, N. Differences in habitual physical activity levels of young people with cerebral palsy and their typically developing peers. A systematic review. Disabil. Rehabil. 2013, 35, 647–655. [Google Scholar] [CrossRef]
- Avery, L.M.; Russell, D.J.; Raina, P.S.; Walter, S.D.; Rosenbaum, P.L. Rasch analysis of the Gross Motor Function Measure. Validating the assumptions of the Rasch model to create an interval-level measure. Arch. Phys. Med. Rehabil. 2003, 84, 697–705. [Google Scholar] [CrossRef]
- Brunton, L.K.; Bartlett, D.J. Validity and reliability of two abbreviated versions of the Gross Motor Function Measure. Phys. Ther. 2011, 91, 577–588. [Google Scholar] [CrossRef]
- Avery, L.M.; Russell, D.J.; Rosenbaum, P.L. Criterion validity of the GMFM-66 item set and the GMFM-66 basal and ceiling approaches for estimating GMFM-66 scores. Dev. Med. Child Neurol. 2013, 55, 534–538. [Google Scholar] [CrossRef]
- Russell, D.J.; Avery, L.M.; Walter, S.D.; Hanna, S.E.; Bartlett, D.J.; Rosenbaum, P.L.; Palisano, R.J.; Gorter, J.W. Development and validation of item sets to improve efficiency of administration of the 66-item Gross Motor Function Measure in children with cerebral palsy. Dev. Med. Child Neurol. 2010, 52, e48–e54. [Google Scholar] [CrossRef]
- Duran, I.; Stark, C.; Saglam, A.; Semmelweis, A.; Lioba Wunram, H.; Spiess, K.; Schoenau, E. Artificial intelligence to improve efficiency of administration of gross motor function assessment in children with cerebral palsy. Dev. Med. Child Neurol. 2022, 64, 228–234. [Google Scholar] [CrossRef] [PubMed]
- Armand, S.; Decoulon, G.; Bonnefoy-Mazure, A. Gait analysis in children with cerebral palsy. EFORT Open Rev. 2016, 1, 448–460. [Google Scholar] [CrossRef] [PubMed]
- States, R.A.; Krzak, J.J.; Salem, Y.; Godwin, E.M.; Bodkin, A.W.; McMulkin, M.L. Instrumented gait analysis for management of gait disorders in children with cerebral palsy. A scoping review. Gait Posture 2021, 90, 1–8. [Google Scholar] [CrossRef]
- Baker, R.; McGinley, J.L.; Schwartz, M.H.; Beynon, S.; Rozumalski, A.; Graham, H.K.; Tirosh, O. The gait profile score and movement analysis profile. Gait Posture 2009, 30, 265–269. [Google Scholar] [CrossRef]
- Malt, M.A.; Aarli, Å.; Bogen, B.; Fevang, J.M. Correlation between the Gait Deviation Index and gross motor function (GMFCS level) in children with cerebral palsy. J. Child. Orthop. 2016, 10, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, H.M.; Nielsen, D.B.; Pedersen, N.W.; Overgaard, S.; Holsgaard-Larsen, A. Gait Deviation Index, Gait Profile Score and Gait Variable Score in children with spastic cerebral palsy. Intra-rater reliability and agreement across two repeated sessions. Gait Posture 2015, 42, 133–137. [Google Scholar] [CrossRef]
- Novacheck, T.F.; Stout, J.L.; Tervo, R. Reliability and validity of the Gillette Functional Assessment Questionnaire as an outcome measure in children with walking disabilities. J. Pediatr. Orthop. 2000, 20, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Thomason, P.; Tan, A.; Donnan, A.; Rodda, J.; Graham, H.K.; Narayanan, U. The Gait Outcomes Assessment List (GOAL). Validation of a new assessment of gait function for children with cerebral palsy. Dev. Med. Child Neurol. 2018, 60, 618–623. [Google Scholar] [CrossRef]
- Drouin, L.M.; Malouin, F.; Richards, C.L.; Marcoux, S. Correlation between the gross motor function measure scores and gait spatiotemporal measures in children with neurological impairments. Dev. Med. Child Neurol. 1996, 38, 1007–1019. [Google Scholar] [CrossRef]
- Molloy, M.; McDowell, B.C.; Kerr, C.; Cosgrove, A.P. Further evidence of validity of the Gait Deviation Index. Gait Posture 2010, 31, 479–482. [Google Scholar] [CrossRef]
- Bedla, M.; Pięta, P.; Kaczmarski, D.; Deniziak, S. Estimation of Gross Motor Functions in Children with Cerebral Palsy Using Zebris FDM-T Treadmill. J. Clin. Med. 2022, 11, 954. [Google Scholar] [CrossRef]
- von Elling-Tammen, L.; Stark, C.; Wloka, K.R.; Alberg, E.; Schoenau, E.; Duran, I. Predicting Gross Motor Function in Children and Adolescents with Cerebral Palsy Applying Artificial Intelligence Using Data on Assistive Devices. J. Clin. Med. 2023, 12, 2228. [Google Scholar] [CrossRef]
- Kuo, C.-Y.; Chang, H.; Chia-Yu Su, E.; Huang, Y.-J.; Tsai, M.-L.; Tseng, S.-H. Effectiveness of early intervention and prediction of outcomes in taiwanese children with developmental delay. Pediatr. Neonatol. 2025. [Google Scholar] [CrossRef]
- Kim, Y.-G.; Kim, S.; Park, J.H.; Yang, S.; Jang, M.; Yun, Y.J.; Cho, J.-S.; You, S.; Jang, S.-H. Explainable Deep-Learning-Based Gait Analysis of Hip-Knee Cyclogram for the Prediction of Adolescent Idiopathic Scoliosis Progression. Sensors 2024, 24, 4504. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Y. Development and Validation of a Prognostic Model for Independent Walking in Children With Cerebral Palsy Based on Machine Learning. Arch. Phys. Med. Rehabilit. 2025. [Google Scholar] [CrossRef] [PubMed]
- Lundkvist Josenby, A.; Jarnlo, G.-B.; Gummesson, C.; Nordmark, E. Longitudinal construct validity of the GMFM-88 total score and goal total score and the GMFM-66 score in a 5-year follow-up study. Phys. Ther. 2009, 89, 342–350. [Google Scholar] [CrossRef] [PubMed]
- Russell, D.J.; Avery, L.M.; Rosenbaum, P.L.; Raina, P.S.; Walter, S.D.; Palisano, R.J. Improved scaling of the gross motor function measure for children with cerebral palsy. Evidence of reliability and validity. Phys. Ther. 2000, 80, 873–885. [Google Scholar] [CrossRef]
- Palisano, R.J.; Rosenbaum, P.; Bartlett, D.; Livingston, M.H. Content validity of the expanded and revised Gross Motor Function Classification System. Dev. Med. Child Neurol. 2008, 50, 744–750. [Google Scholar] [CrossRef]
- Wood, E.; Rosenbaum, P. The gross motor function classification system for cerebral palsy. A study of reliability and stability over time. Dev. Med. Child Neurol. 2000, 42, 292–296. [Google Scholar] [CrossRef]
- Mayer-Schönberger, V.; Ingelsson, E. Big Data and medicine. A big deal? J. Intern. Med. 2018, 283, 418–429. [Google Scholar] [CrossRef]
- Deo, R.C. Machine Learning in Medicine. Circulation 2015, 132, 1920–1930. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and Regression by RandomForest. R-News 2002, 2002, 18–22. [Google Scholar]
- Günther, F.; Fritsch, S. neuralnet. Training of Neural Networks. R J. 2010, 2, 30. [Google Scholar] [CrossRef]
- Chambers, J.; Eddy, W.; Härdle, W.; Sheather, S.; Tierney, L.; Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S; Springer: New York, NY, USA, 2002. [Google Scholar]
- Chen, T.; He, T.; Benesty, M.; Khotilovich, V.; Tang, Y.; Cho, H.; Chen, K. Xgboost: Extreme Gradient Boosting, R package version 0.4-2; The R Foundation: Vienna, Austria, 2015. [Google Scholar]
- Lundberg, S.M.; Lee, S.-I. A Unified Approach to Interpreting Model Predictions. arXiv 2017, arXiv:1705.07874. [Google Scholar] [CrossRef]
- Lin, L.I.-K. A Concordance Correlation Coefficient to Evaluate Reproducibility. Biometrics 1989, 45, 255. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost. A Scalable Tree Boosting System; The R Foundation: Vienna, Austria, 2016. [Google Scholar]
- Attias, M.; Bonnefoy-Mazure, A.; Lempereur, M.; Lascombes, P.; de Coulon, G.; Armand, S. Trunk movements during gait in cerebral palsy. Clin. Biomech. 2015, 30, 28–32. [Google Scholar] [CrossRef]
- Oeffinger, D.; Bagley, A.; Rogers, S.; Gorton, G.; Kryscio, R.; Abel, M.; Damiano, D.; Barnes, D.; Tylkowski, C. Outcome tools used for ambulatory children with cerebral palsy. Responsiveness and minimum clinically important differences. Dev. Med. Child Neurol. 2008, 50, 918–925. [Google Scholar] [CrossRef] [PubMed]
- Baker, R. Gait analysis methods in rehabilitation. J. Neuroeng. Rehabil. 2006, 3, 4. [Google Scholar] [CrossRef] [PubMed]
- Stark, C.; Duran, I.; Martakis, K.; Spiess, K.; Semler, O.; Schoenau, E. Effect of Long-Term Repeated Interval Rehabilitation on the Gross Motor Function Measure in Children with Cerebral Palsy. Neuropediatrics 2020, 51, 407–416. [Google Scholar] [CrossRef] [PubMed]
GMFCS | |||
---|---|---|---|
All (n = 256) | Level I (n = 42) | Level II (n = 214) | |
Female, n | 97 | 16 | 81 |
Age, years | 9.0 (3.6) | 9.7 (4.4) | 8.8 (3.5) |
Height, cm | 128.9 (20.5) | 134.6 (26.1) | 127.8 (19.1) |
Weight, kg | 29.2 (14.4) | 33.3 (17.5) | 28.4 (13.6) |
CP subtype, % | |||
Spastic tetra- and diplegic | 72.7 | 59.5 | 75.2 |
Unilateral | 17.6 | 38.1 | 13.6 |
Dyskinetic | 23.4 | 0 | 2.8 |
Ataxic | 35.1 | 0 | 4.2 |
Mixed type | 3.9 | 2.4 | 4.2 |
Non-Standardized Coefficients | Standardized Coefficients | ||||
---|---|---|---|---|---|
Regression Coefficient | Std. Error | ||||
Beta | T | p Value | |||
Constant | 101,888 | 7952 | 12,812 | <0.001 | |
Mean LOGL | 0.066 | 0.012 | 0.302 | 5284 | <0.001 |
Mean Stand phase | −0.485 | 0.122 | −0.247 | −3963 | <0.001 |
Mean step width | −0.355 | 0.106 | −0.206 | −3344 | <0.001 |
SD of velocoity | −8538 | 2197 | −0.225 | −3887 | <0.001 |
Random Forest | Range | by | Optimal |
---|---|---|---|
Number of variables to possibly split at in each node | 2–26 | 5 | 7 |
Minimal node size | 5–26 | 3 | 8 |
Fraction of observations to sample | 0.6–0.8 | 0.1 | 0.7 |
number of trees | 100–300 | 100 | 200 |
Feed forward neural net | Range | by | optimal |
number of hidden neurons | 4–20 | 2 | 12 |
decay | 0–0.1 | 0.005 | 0.015 |
Support vector machine | Range | by | optimal |
epsilon in the insensitive-loss function | 0–1 | 0.2 | 0 |
cost of constraints violation | 2(2–7) | 1 | 24 |
XGBoost | Range | by | optimal |
eta | 0.01–0.3 | NA | 0.103 |
max_depth | 2–10 | NA | 2 |
subsample | 0.5–1.0 | NA | 1 |
colsample_bytree | 0.5–1.0 | NA | 0.936 |
min_child_weight | 1–4 | NA | 1 |
norunds | 50–100 | NA | 100 |
Algorithm | CCC | MAE | RMSE | PCC |
---|---|---|---|---|
MLR | 0.28 (0.11; 0.44) | 6.60 (5.41; 7.78) | 8.38 (7.24; 9.95) | 0.34 (0.13; 0.53) |
RF | 0.36 (0.20; 0.51) | 6.23 (5.18; 7.27) | 7.73 (6.68; 9.17) | 0.44 (0.24; 0.60) |
FNN | 0.33 (0.17; 0.48) | 6.19 (5.05; 7.33) | 7.95 (6.87; 9.44) | 0.42 (0.21; 0.59) |
SVM | 0.31 (0.13; 0.46) | 6.33 (5.20; 7.47) | 8.05 (6.95; 9.55) | 0.37 (0.16; 0.55) |
XGBoost | 0.49 (0.31; 0.63) | 6.32 (5.35; 7.28) | 7.59 (6.56; 9.02) | 0.52 (0.33; 0.67) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gross, S.; Spiess, K.; Steven, S.; Zimmermann, M.; Schoenau, E.; Duran, I. Prediction of the Gross Motor Function Measure-66 in Ambulant Children with Cerebral Palsy Based on Instrumental Gait Analysis Using Machine-Learning Algorithms. Appl. Sci. 2025, 15, 8664. https://doi.org/10.3390/app15158664
Gross S, Spiess K, Steven S, Zimmermann M, Schoenau E, Duran I. Prediction of the Gross Motor Function Measure-66 in Ambulant Children with Cerebral Palsy Based on Instrumental Gait Analysis Using Machine-Learning Algorithms. Applied Sciences. 2025; 15(15):8664. https://doi.org/10.3390/app15158664
Chicago/Turabian StyleGross, Stephanie, Karoline Spiess, Stefanie Steven, Maja Zimmermann, Eckhard Schoenau, and Ibrahim Duran. 2025. "Prediction of the Gross Motor Function Measure-66 in Ambulant Children with Cerebral Palsy Based on Instrumental Gait Analysis Using Machine-Learning Algorithms" Applied Sciences 15, no. 15: 8664. https://doi.org/10.3390/app15158664
APA StyleGross, S., Spiess, K., Steven, S., Zimmermann, M., Schoenau, E., & Duran, I. (2025). Prediction of the Gross Motor Function Measure-66 in Ambulant Children with Cerebral Palsy Based on Instrumental Gait Analysis Using Machine-Learning Algorithms. Applied Sciences, 15(15), 8664. https://doi.org/10.3390/app15158664