Synthesis and In Vitro Biological Studies of Heterocyclic Benzimidazole Derivatives as Potential Therapeutics for Trichinellosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Procedures
2.2. Chemistry
2.2.1. General Procedures for the Synthesis of Compounds 4a–c
General Procedure 1 [21]
General Procedure 2 [22]
2.2.2. General Procedures for the Synthesis of Compounds 6a–c [1]
2.2.3. Compound Data
- (E)-N-(1H-benzimidazol-2-yl)-1-(thiophen-2-yl)methanimine (4a):
- (E)-N-(1-methyl-1H-benzimidazol-2-yl)-1-(thiophen-2-yl)methanimine (4b):
- (E)-N-(1-ethyl-1H-benzimidazol-2-yl)-1-(thiophen-2-yl)methanimine (4c):
- (E)-2-(2-(thiophen-2-ylmethylene)hydrazinyl)-1H-benzimidazole (6a):
- (E)-2-(2-(furan-2-ylmethylene)hydrazinyl)-1H-benzimidazole (6b):
- (E)-2-(2-(pyridin-4-ylmethylene)hydrazinyl)-1H-benzimidazole (6c):
2.3. Photostability
2.4. Parasitological Study
2.5. In Vitro Tubulin Polymerization Assay
2.6. In Silico Analysis
3. Results and Discussion
3.1. Synthesis
3.2. Photophysical Evaluation
3.3. Anthelmintic Activity
3.4. In Vitro Tubulin Inhibition Assay
3.5. In Silico Analysis of Physicochemical Properties, Pharmacokinetics, and Drug-likeness
Compound | WLOGP a | % ABS b | XLOGP3 c | Log S d (ESOL) | Csp 3 e | GI abs f | P-gp sub g | BBB h | PAINS i |
---|---|---|---|---|---|---|---|---|---|
4a | 3.13 | 85.1 | 3.13 | −3.74 | 0.00 | High | No | Yes | 0 |
4b | 3.39 | 88.9 | 3.09 | −3.76 | 0.08 | High | No | Yes | 0 |
4c | 3.87 | 88.9 | 3.39 | −3.94 | 0.14 | High | No | Yes | 0 |
6a | 2.88 | 81.0 | 3.45 | −3.93 | 0.00 | High | No | No | 0 |
6b | 2.41 | 86.2 | 2.84 | −3.44 | 0.00 | High | No | Yes | 0 |
6c | 2.21 | 86.3 | 2.14 | −3.08 | 0.00 | High | No | Yes | 0 |
Albendazole | 3.05 | 77.2 | 2.81 | −3.23 | 0.33 | High | No | No | 0 |
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
T. spiralis | Trichinella spiralis |
ML | Muscle larvae |
CNS | Central Neurous System |
IR | Infrared Spectroscopy |
NMR | Nuclear Magnetic Resonance Spectroscopy |
SAR | Structure-activity relationship |
TLC | Thin-Layer Chromatografy |
WLOGP | Water Partition Coefficient |
DMSO | Dimethyl Sulfoxide |
ACN | Acetonitrile |
MeOH | Methanol |
MW | Molecular Weight |
TPSA | Topological Polar Surface Area |
Natoms | Number of nonhydrogen atoms |
HBA | Number of hydrogen-bond acceptors (O and N atoms; |
HAD | Number of hydrogen-bond donors (OH and NH groups |
Nvoil | Number of ‘Rule of five’ violations |
NRot | Number of rotatable bonds |
LogP | Consensus Log Po/w, calculated as an average of the five available methods for logP prediction |
WLOGP | Water Partition Coefficient |
XLOGP3 | Parameter that predicts the logP value of a query compound by using the known logP value of a reference compound as a starting point |
Log S (ESOL) | Indicator of the aqueous solubility of a compound |
ABS | Absorption |
Csp3 | The Fraction of Carbon atoms in sp3 hybridization |
GI abs | Gastrointestinal Absorption |
P-gp | Transmembrane Glycoprotein |
BOILED-Egg | Brain Or IntestinaLEstimateD—Egg method |
BBB | Blood–brain Barrier |
PAINS | Pan-Assay Interference Compounds |
References
- Anichina, K.; Argirova, M.; Tzoneva, R.; Uzunova, V.; Mavrova, A.; Vuchev, D.; Popova-Daskalova, G.V.; Fratev, F.; Guncheva, M.; Yancheva, D. 1H-benzimidazole-2-yl hydrazones as tubulin-targeting agents: Synthesis, structural characterization, anthelmintic activity and antiproliferative activity against MCF-7 breast carcinoma cells and molecular docking studies. Chem. Biol. Interact. 2021, 345, 109540. [Google Scholar] [CrossRef] [PubMed]
- Argirova, M.A.; Georgieva, M.K.; Hristova-Avakumova, N.G.; Vuchev, D.I.; Popova-Daskalova, G.V.; Anichina, K.K.; Yancheva, D.Y. New 1H-benzimidazole-2-yl hydrazones with combined antiparasitic and antioxidant activity. RSC Adv. 2021, 11, 39848–39868. [Google Scholar] [CrossRef] [PubMed]
- Anichina, K.; Georgiev, N.; Lumov, N.; Vuchev, D.; Popova-Daskalova, G.; Momekov, G.; Cherneva, E.; Mihaylova, R.; Mavrova, A.; Atanasova-Vladimirova, S.; et al. Fused Triazinobenzimidazoles Bearing Heterocyclic Moiety: Synthesis, Structure Investigations, and In Silico and In Vitro Biological Activity. Molecules 2023, 28, 5034. [Google Scholar] [CrossRef] [PubMed]
- Penga, R.Y.; Rena, H.J.; Zhang, C.L.; Lv, P.; Wei, G.H.; Minga, L. Comparative proteomics analysis of Trichinella spiralis muscle larvae exposed to albendazole sulfoxide stress. Acta Trop. 2018, 185, 183–192. [Google Scholar] [CrossRef]
- Xing, F.; Ye, H.; Yang, J.; Chan, J.F.; Seto, W.K.; Pai, P.M.; Yuen, K.Y.; Hung, D.L. Fatal pancytopenia due to albendazole treatment for strongyloidiasis. IDCases 2018, 12, 112–116. [Google Scholar] [CrossRef]
- Mira, N.M.; Henaish, A.M.; Moussa, E.A.; Helal, I.H.; Kasem, S.M. Improved antiparasitic effects of mebendazole using chitosan and zinc oxide nanocomposites for drug delivery in Trichinella spiralis infected mice during the muscular phase. Acta Trop. 2025, 263, 107565. [Google Scholar] [CrossRef]
- Chai, Y.; Jung, K.; Hong, J. Albendazole and mebendazole as antiparasitic and anti-cancer agent: An update. Korean J. Parasitol. 2021, 59, 189–225. [Google Scholar] [CrossRef]
- Rosca, E.C.; Tudor, R.; Cornea, A.; Simu, M. Central Nervous System Involvement in Trichinellosis: A Systematic Review. Diagnostics 2021, 11, 945. [Google Scholar] [CrossRef]
- Magda SA Abdeltawab, M.S.S.; Abdel-Shafi, I.R.; Aboulhoda, B.E.; Mahfoz, A.M.; Hamed, A.M.R. The neuroprotective potential of curcumin on T. Spiralis infected mice. BMC Complement. Med. Ther. 2024, 24, 99. [Google Scholar]
- Mavrova, A.T.; Anichina, K.K.; Vuchev, D.I.; Tsenov, J.A.; Kondeva, M.S.; Micheva, M.K. Synthesis and antitrichinellosis activity of some 2-substituted-[1,3]thiazolo[3,2-a]benzimidazol-3(2H)-ones. Bioorg. Med. Chem. 2005, 13, 5550–5559. [Google Scholar] [CrossRef]
- Bigot, S.; Leprohon, P.; Vasquez, A.; Bhadoria, R.; Skouta, R.; Ouellette, M. Thiophene derivatives activity against the protozoan parasite Leishmania infantum. Int. J. Parasitol. Drugs Drug Resist. 2023, 21, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Felix, M.B.; de Souza, E.R.; de Lima, M.C.A.; Frade, D.K.G.; Serafim, V.D.L.; Rodrigues, A.D.F.; Neris, L.D.N.; Ribeiro, F.F.; Scotti, L.; Scotti, M.T.; et al. Antileishmanial Activity of new Thiophene-indole Hybrids: Design, Synthesis, Biological and Cytotoxic Evaluation, and Chemometric Studies. Bioorg. Med. Chem. 2016, 24, 3972. [Google Scholar] [CrossRef] [PubMed]
- De Lima Serafim, V.; Félix, M.B.; Frade Silva, D.K.; Rodrigues, K.A.d.F.; Andrade, P.N.; de Almeida, S.M.V.; de Albuquerque dos Santos, S.; de Oliveira, J.F.; de Lima, M.C.A.; Mendonça-Junior, F.J.B.; et al. New thiophene-acridine compounds: Synthesis, antileishmanial activity, DNA binding, chemometric, and molecular docking studies. Chem. Biol. Drug Des. 2018, 91, 1141–1155. [Google Scholar] [CrossRef]
- Opsenica, I.M.; Verbić, T.Ž.; Tot, M.; Sciotti, R.J.; Pybus, B.S.; Djurković-Djaković, O.; Slavić, K.; Šolaja, B.A. Investigation into novel thiophene- and furan-based 4-amino-7-chloroquinolines afforded antimalarials that cure mice. Bioorg. Med. Chem. 2015, 23, 2176–2186. [Google Scholar] [CrossRef]
- Konstantinović, J.; Videnović, M.; Srbljanović, J.; Djurković-Djaković, O.; Bogojević, K.; Sciotti, R.; Šolaja, B. Antimalarials with Benzothiophene Moieties as Aminoquinoline Partners. Molecules 2017, 22, 343. [Google Scholar] [CrossRef]
- Majumder, S.; Kierszenbaum, F. N,N′-Thiophene-substituted polyamine analogs inhibit mammalian host cell invasion and intracellular multiplication of Trypahosoma cruzi. Mol. Biochem. Parasitol. 1993, 60, 231–239. [Google Scholar] [CrossRef]
- Zani, C.L.; Chiari, E.; Krettli, A.U.; Murta, S.M.F.; Cunningham, M.L.; Fairlamb, A.H.; Romanha, A.J. Anti-plasmodial and anti-trypanosomal activity of synthetic naphtho[2,3-b]thiophen-4,9-quinones. Bioorg. Med. Chem. 1997, 5, 2185–2192. [Google Scholar] [CrossRef] [PubMed]
- Deep, A.; Narasimhan, B.; Aggarwal, S.; Kaushik, D.; Sharma, A.K. Thiophene Scaffold as Prospective Central Nervous System Agent: A Review. Cent. Nerv. Syst. Agents Med. Chem. 2016, 16, 158–164. [Google Scholar] [CrossRef]
- Mishra, C.B.; Kumari, S.; Tiwari, M. Thiazole: A promising heterocycle for the development of potent CNS active agents. Eur. J. Med. Chem. 2015, 92, 1–34. [Google Scholar] [CrossRef]
- Mavrova, A.T.; Denkova, P.; Tsenov, Y.A.; Anichina, K.K.; Vutchev, D.I. Synthesis and antitrichinellosis activity of some bis(benzimidazol-2-yl)amines. Bioorg. Med. Chem. 2007, 15, 6291–6297. [Google Scholar] [CrossRef]
- Nawrocka, W.; Sztuba, B.; Kowalska, M.W.; Liszkiewicz, H.; Wietrzyk, J.; Nasulewicz, A.; Pełczyn´ska, M.; Opolski, A. Synthesis and antiproliferative activity in vitro of 2-aminobenzimidazole derivatives. Il Farm. 2024, 59, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Siminov, A.M.; Pozharskii, A.F. Researches in the field of benzimidazole derivatives XVII. Azomethines based on 2-aminobenzimidazoles and furan series aldehyde. Khim. Geterotsikl. Soedin. 1965, 1, 203–209. [Google Scholar] [CrossRef]
- Social Science Statistics. Available online: http://www.socscistatistics.com/tests/anova/default2.aspx (accessed on 1 November 2018).
- Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019, 47, W357–W364. [Google Scholar] [CrossRef]
- Tzvetkov, N.T.; Stammler, H.-G.; Georgieva, M.G.; Russo, D.; Faraone, I.; Balacheva, A.A.; Hristova, S.; Atanas, G.; Atanasov, A.G.; Milella, L.; et al. Carboxamides vs. methanimines: Crystal structures, binding interactions, photophysical studies, and biological evaluation of (indazole-5-yl)methanimines as monoamine oxidase B and acetylcholinesterase inhibitors. Eur. J. Med. Chem. 2019, 179, 404–422. [Google Scholar] [CrossRef]
- Monzote, L.; Gille, L. Mitochondria as a promising antiparasitic target. Curr. Clin. Pharmacol. 2010, 5, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Qin, Y.; Zhang, X.; Zheng, L.; Dai, X.; Wu, H.; Dong, Y.; Cui, Y. Killing the muscular larvae of Trichinella spiralis and the anti-fibrotic effect of the combination of Wortmannilatone F and recombinant G31P in a murine model of trichinellosis. Biomed. Pharmacother. 2018, 108, 934–940. [Google Scholar] [CrossRef] [PubMed]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W. Feeney, Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug. Deliv. Rev. 2001, 46, 3–26. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef]
- Di, L.; Fish, P.V.; Mano, T. Bridging solubility between drug discovery and development. Drug Discov. Today 2012, 17, 486–495. [Google Scholar] [CrossRef]
- Fourestie, V.; Douceron, H.; Brugieres, P.; Ancelle, T.; Lejonc, J.L.; Gherardi, R.K. Neurotrichinosis: A cerebrovascular disease associated with myocardial injury and hypereosinophilia. Brain 1993, 116, 603–616. [Google Scholar] [CrossRef]
- Vilar, S.; Chakrabarti, W.M.; Costanzi, S. Prediction of passive blood-brain partition-ing: Straightforward and effective classification models based on in silico derived physicochemical descriptors. J. Mol. Graph. Model. 2010, 28, 899–903. [Google Scholar] [CrossRef] [PubMed]
- Lespine, A.; Ménez, C.; Bourguinat, C.; Prichard, R.K. P-glycoproteins and other multi-drug resistance transporters in the pharmacology of anthelmintics: Prospects for re-versing transport-dependent anthelmintic resistance. Int. J. Parasitol. Drugs Drug Resist. 2012, 2, 58–75. [Google Scholar] [CrossRef] [PubMed]
- Nare, B.; Liu, Z.; Prichard, R.K.; Georges, E. Benzimidazoles, potent anti-mitotic drugs: Substrates for the P-glycoprotein transporter in multidrug-resistant cells. Biochem. Pharmacol. 1994, 48, 2215–2222. [Google Scholar] [CrossRef] [PubMed]
- Merino, G.; Jonker, J.W.; Wagenaar, E.; Pulido, M.M.; Molina, A.J.; Alvarez, A.I.; Schinkel, A.H. Transport of anthelmintic benzimidazole drugs by breast cancer resistance protein (BCRP/ABCG2). Drug Metab. Dispos. 2005, 33, 614–618. [Google Scholar] [CrossRef]
- Cheng, T.; Zhao, Y.; Li, X.; Lin, F.; Xu, Y.; Zhang, X.; Yan Li, Y.; Wang, R. Computation of Octanol−Water Partition Coefficients by Guiding an Additive Model with Knowledge. J. Chem. Inf. Model. 2007, 47, 2140–2148. [Google Scholar] [CrossRef]
Compound | Substituents | Concentration 50 (100) µg/mL in µM | Efficacy (%) After 24 h | Efficacy (%) After 48 h | |||
---|---|---|---|---|---|---|---|
R | Het | 50 µg/mL | 100 µg/mL | 50 µg/mL | 100 µg/mL | ||
4a | H | thiophen-2-yl | 0.220 (0.440) | 54.5 ± 0.52 b | 68.9 ± 0.53 | 71.5 ± 3.21 c | 80.5 ± 0.33 d |
4b | CH3 | thiophen-2-yl | 0.207 (0.414) | 50.9 ± 0.35 | 63.8 ± 1.82 | 68.6 ± 1.03 | 74.0 ± 0.48 d |
4c | C2H5 | thiophen-2-yl | 0.196 (0.392) | 48.4 ± 1.57 | 61.7 ± 0.51 | 58.9 ± 0.55 | 73.4 ± 0.63 c |
6a | H | thiophen-2-yl | 0.206 (0.413) | 25.4 ± 0.58 c | 28.9 ± 0.39 | 53.8 ± 0.34 | 57.5 ± 1.02 |
6b | H | furan-2-yl | 0.221 (0.442) | 20.4± 0.45 | 28.0 ± 0.67 | 22.8 ± 0.05 | 38.4 ± 0.67 |
6c | H | pyridin-4-yl | 0.210 (0.421) | 11.4 ± 2.48 | 13.5 ± 1.11 | 18.5 ± 0.57 | 25.5 ± 1.61 b |
Albendazole | 0.188 (0.377) | 10.5 ± 0.62 | 10.7 ± 0.32 | 14.5 ± 0.26 | 15.7 ± 0.34 | ||
Ivermectin | 0.057 (0.114) | 45.5 ± 3.96 | 48.9 ± 0.01 | 62.1 ± 0.04 | 78.3 ± 0.86 c |
Compound 1 | Half-Time of Aggregation χ0, min | Slope Factor of the Boltzmann Fit dχ, min | Lag Time 2, min | Curve/Equation |
---|---|---|---|---|
tubulin (spontaneous polymerization) | 17.6 | 11.6 | No lag time | Sigmoidal/Boltzmann |
albendazole | 32.4 | 17.6 | No lag time | Sigmoidal/Boltzmann |
nocodazole | 24.1 | 15.9 | No lag time | Sigmoidal/Boltzmann |
paclitaxel | 7.4 | 3.9 | No lag time | Sigmoidal/Boltzmann |
4a | 12.9 | 7.1 | No lag time | Sigmoidal/Boltzmann |
4b | 15.9 | 9.96 | No lag time | Sigmoidal/Boltzmann |
6a | 14.8 | 9.8 | No lag time | Sigmoidal/Bolzman |
6b | 15.9 | 10.4 | No lag time | Sigmoidal/Boltzmann |
6c | 20 (1 st) 65 (2 nd) | Between 0–10 min and 45–55 min | Bi-Sigmoidal/Boltzmann-dual curve |
Compound | MW a | TPSA b | Natoms c | HBA d | HBD e | Nviol f | NRotB g | logP h |
---|---|---|---|---|---|---|---|---|
4a | 227.28 | 69.28 | 16 | 2 | 1 | 0 | 2 | 3.01 |
4b | 241.31 | 58.42 | 17 | 2 | 0 | 0 | 2 | 3.19 |
4c | 255.34 | 58.42 | 18 | 2 | 0 | 0 | 3 | 3.43 |
6a | 242.30 | 81.31 | 17 | 2 | 2 | 0 | 3 | 2.58 |
6b | 226.23 | 66.21 | 17 | 3 | 2 | 0 | 3 | 1.90 |
6c | 237.26 | 65.96 | 18 | 3 | 2 | 0 | 3 | 1.80 |
Albendazole | 265.33 | 92.31 | 18 | 3 | 2 | 0 | 6 | 1.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anichina, K.; Popova-Daskalova, G.; Vuchev, D.; Guncheva, M.; Yancheva, D.; Georgiev, N. Synthesis and In Vitro Biological Studies of Heterocyclic Benzimidazole Derivatives as Potential Therapeutics for Trichinellosis. Appl. Sci. 2025, 15, 6758. https://doi.org/10.3390/app15126758
Anichina K, Popova-Daskalova G, Vuchev D, Guncheva M, Yancheva D, Georgiev N. Synthesis and In Vitro Biological Studies of Heterocyclic Benzimidazole Derivatives as Potential Therapeutics for Trichinellosis. Applied Sciences. 2025; 15(12):6758. https://doi.org/10.3390/app15126758
Chicago/Turabian StyleAnichina, Kameliya, Galya Popova-Daskalova, Dimitar Vuchev, Maya Guncheva, Denitsa Yancheva, and Nikolai Georgiev. 2025. "Synthesis and In Vitro Biological Studies of Heterocyclic Benzimidazole Derivatives as Potential Therapeutics for Trichinellosis" Applied Sciences 15, no. 12: 6758. https://doi.org/10.3390/app15126758
APA StyleAnichina, K., Popova-Daskalova, G., Vuchev, D., Guncheva, M., Yancheva, D., & Georgiev, N. (2025). Synthesis and In Vitro Biological Studies of Heterocyclic Benzimidazole Derivatives as Potential Therapeutics for Trichinellosis. Applied Sciences, 15(12), 6758. https://doi.org/10.3390/app15126758